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A nonlocal theory of sediment transport on hillslopes
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[1] Hillslopes are typically shaped by varied processes which have a wide range of event‐
based downslope transport distances, some of the order of the hillslope length itself. We
hypothesize that this can lead to a heavy‐tailed distribution of displacement lengths for
sediment particles. Here, we propose that such a behavior calls for a nonlocal computation of
the sediment flux, where the sediment flux at a point is not strictly a function (linear or
nonlinear) of the gradient at that point only but is an integral flux taking into account the
upslope topography (convolution Fickian flux). We encapsulate this nonlocal behavior in a
simple fractional diffusive model which involves fractional derivatives, with the order
of differentiation (1 < a ≤ 2) dictating the degree of nonlocality (a = 2 corresponds to linear
diffusion and strictly local dependence on slope). The model predicts an equilibrium
hillslope profile which is parabolic close to the ridgetop and transits, at a short downslope
distance, to a power law with an exponent equal to the parameter a of the fractional
transport model. Hillslope profiles reported in previously studied sites support this
prediction. Furthermore, we show that the nonlocal transport model gives rise to a nonlinear
dependency on local slope and that variable upslope topography leads to widely
varying rates of sediment flux for a given local hillslope gradient. Both of these results are
consistent with available field data and suggest that nonlinearity in hillslope flux
relationships may arise in part from nonlocal transport effects in which displacement
lengths increase with hillslope gradient. The proposed hypothesis of nonlocal transport
implies that field studies and models of sediment fluxes should consider the size and
displacement lengths of disturbance events that mobilize hillslope colluvium.
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1. Introduction

[2] In absence of overland flow‐driven or wind‐driven
transport, the movement of soil on landscapes requires some
kind of disturbance (Figure 1). This disturbance arises in
many ways leading to a wide range of length scales of
displacement. In clay‐rich soils mantling sloping land-
scapes, periodic wetting of the ground may cause swelling
and downslope flow, but even as the soils remain wet,
progressively increasing grain resistance may halt motion.
Drying and cracking then resets the contacts and allows
another period of flow in the next wet season [Fleming and
Johnson, 1975]. This cycle operates over some length scale
of displacement. Simple wetting expansion and drying col-
lapse through a season can incrementally shift near surface
soils short distances downslope [e.g., Kirkby, 1967]. Sea-
sonal cycles of movement by ice‐driven processes shift soils

and during spring melt can give way as continuously
moving solifluction lobes which may carry soil a consider-
able distance even on gentle slopes [e.g., Washburn, 1973].
Biota work the soil at a wide range of scales, leading to
dilation and displacement downslope. Insects and worms
may cause minor local displacement but through their
persistent and pervasive activity cause significant move-
ment [e.g., Darwin, 1881]. Burrowing animals can make
an extensive network of tunnels and push piles of dirt meters
downslope. The collapse of large trees may rotate and
expose their root system and displace clumps of soil meters
downslope [e.g., Norman et al., 1995; Gabet et al., 2003].
The exposed, locally steep, tree throw mound and the
smaller annual burrow mounds are sites of accelerated rain
splash, raveling and fine scale biotic disturbance. In effect,
the biotic roughening of the ground surface by the local
mound formation leads to accelerated soil movement. On
sufficiently steep granular soils, fire may suddenly remove
particles stored behind fallen woody debris and unleash
particles to ravel downslope [e.g., Roering and Gerber,
2005], sometimes tens of meters. Shallow landslides may
also initiate, mobilize, and redeposit on hillslopes. Soil
movement, then, arises through the sum of stochastic pro-
cesses, influenced by seasonal and biotic cycles, the integral
of which is a net flux of soil which tends to increase with
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increasing hillslope gradient. The individual particle step
lengths resulting from disturbances will vary greatly.
[3] On gentle hillslopes there is field evidence [e.g.,

McKean et al., 1993] that the mean soil transport varies
linearly with local gradient. On steeper slopes, however,
theory and limited observations suggest that transport
increases nonlinearly with slope [e.g., Roering et al., 1999].
Increasing field and theoretical evidence indicates that flux
also depends on active transport depth [Heimsath et al.,
1999; Roering, 2008, Furbish et al., 2009]. In particular,
Furbish et al. [2009] show that a diffusivity‐like coefficient
which takes into account the local slope depth product
produces a sediment flux which varies linearly with local
gradient. Both linear and nonlinear flux laws assume that
transport depends on some “local” slope, although we lack
theory for what sets the length scale over which that slope
should be determined. The disturbance by biota creates an
irregular ground surface, with locally steep piles of loose
soil that diffuse downslope across the mean slope (Figure 1).
Hence, the slope at any point may not represent the actively
contributing slope‐driving processes, and cannot account for
travel distances resulting from disturbances. If we could
monitor every particle on a hillslope where these distur-
bance‐driven processes (often placed together under the
term “creep”) occur, it is possible that long transport events

occur with a finite, nonvanishing, nonexponentially decay-
ing probability such that the pdf of transport distances is
heavy tailed [e.g., Tucker and Bradley, 2010]. This con-
ception of soil transport may not be well represented by a
transport expression that relates flux to a “local” slope.
Moreover, the possibility of heavy‐tailed particle travel
histories makes selecting a meaningful mean slope for the
application of such local laws problematic. To date,
empirical fitting procedures (reducing variance by increas-
ing the length scale of averaging while trying to maintain
local profile curvature) have been used for the estimation of
the local slope; common methods include polynomial fitting
and Gaussian filtering [e.g., Roering et al., 1999; Lashermes
et al., 2007].
[4] Here we propose an alternative formulation of sedi-

ment transport on hillslopes which relies on the notion of
nonlocal computation of sediment flux, reflecting the fact
that mass flux at a point on the hillslope is being influenced
by disturbances well upslope and not simply linked to local
slope (and soil depth). Our analysis may also explain the
variance in flux rate for a given local slope observed in some
studies. Our theory, although not derived from physical con-
siderations (e.g., involving balances of forces and resistances),
presents a general mathematical framework within which the
upslope influences to the sediment flux at a given point can

Figure 1. Cartoon illustrating processes such as gopher mounds, tree throws, and wood blockage, which
contribute to sediment transport on a hillslope. Owing to the varied range of length scales of transport of
these processes, the number of sediment particles arriving at a given location downslope is influenced by
a region of upslope topography. This can be treated using the notion of a nonlocal flux (equation (8))
which is computed by a weighted average of upslope contributions.
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be cast into a continuum constitutive law for sediment
transport. Specifically, we propose a nonlocal formulation of
transport laws which relies on an integral (non‐Fickian) flux
computation which explicitly takes into account the upslope
topography from any point of interest. The proposed non-
local transport model includes linear diffusive transport as a
special case.
[5] The paper is structured as follows. In section 2, we

formulate the nonlocal constitutive law for sediment trans-
port on hillslopes and in section 3 we derive its steady state
equilibrium profile under appropriate boundary conditions.
In section 4 we interpret observed hillslope profiles in the
Oregon Coast Range, in the Appalachians of Maryland and
Virginia, and east of San Francisco (California) within the
nonlocal transport formulation. In section 5 we compare the
linear, nonlinear and nonlocal transport models in several
ways. The most important result is that the linear nonlocal
model gives rise to a nonlinear relationship between sedi-
ment flux and local slope, akin to that observed on steep
slopes. In section 6 we demonstrate that applying the non-
local flux model to an ensemble of hillslope profiles pro-
duces significant variability of sediment flux for a given
value of local slope as a result of variations in upslope
topography. In section 7, we discuss the relationship
between the shape of the probability density function of the
sediment displacement lengths (which dictate the micro-
scopic behavior of the transport process but which are typ-
ically not measured) and the parameter a of the nonlocal
transport model (which describes the macroscopic properties
of the transport). In section 8 we present some preliminary
thoughts as to the ability of the nonlocal transport for-
mulations to circumvent the scale dependence of sediment
flux computed using local, nonlinear models. We conclude
that our model shows the possibility that nonlocal sediment
transport processes may be important on hillslopes and
warrant more consideration both in field studies and theo-
retically. Our model anticipates more process‐based con-
siderations that would account mechanistically for biotic
disturbance and it suggests that models for transport and
weathering of colluvial soils and geochronological analysis
of particles on steep hillslopes should consider the possible
effects of nonlocal transport.

2. A Nonlocal Constitutive Law for Hillslope
Sediment Transport: Convolution Fickian Flux

[6] The simplest sediment flux law, proposed by Culling
[1960] in analogy to Fick’s law of diffusion, expresses
sediment flux as proportional to the topographic gradient:

qsðxÞ ¼ �KrhðxÞ ð1Þ

where qs(x) is sediment flux (volume per unit time per unit
width: L3/L/T ) at location x (where x is distance from the
ridgetop), K is the diffusivity coefficient (L2/T), and h(x) is
the surface elevation with respect to a datum. It is easy to
show [e.g., Howard, 1994] that substituting (1) in the con-
tinuity (Exner) equation:

�r
@h

@t
¼ �rU � �sr � qs ð2Þ

where rs and rr are the bulk densities of sediment and rock,
respectively, and U is the rock uplift rate results in the linear
diffusion equation:

@h

@t
¼ U þ Kr2h ð3Þ

where we have assumed for simplicity that the bulk densities
of rock and sediment are the same (which is almost never
the case) and have ignored chemical erosion. (Note that
equation (3) can also be derived using a moving coordinate
system of erosion driven by diffusive transport in which the
uplift term enters as a lower boundary condition.) If the rate
of surface erosion is approximately balanced by the rock
uplift, i.e., dynamic equilibrium [Gilbert, 1909; Hack,
1960], then ∂h/∂t ≈ 0 and the steady state 1D case can be
written as

@h

@t
¼ 0 , d2h

dx2
¼ �U

K
ð4Þ

Integrating twice and imposing the boundary conditions

hð0Þ ¼ Htop ¼ U

2K
L2

dh

dx

����
x¼0

¼ 0
ð5Þ

such that h(L) = 0 (river edge), the solution is given by

hðxÞ ¼ Htop � U

2K
x2 ð6Þ

for 0 ≤ x ≤ L [e.g., Koons, 1989]. Furthermore, the prop-
erties of the equilibrium hillslope profiles predicted by linear
diffusion are (1) linear increase of local slope with down-
slope distance and (2) constant curvature along the hillslope
profile.
[7] The underlying assumption of a classical diffusion

equation is that the step lengths of sediment particles,
defined as the distances traveled by the particles once
entrained until they are deposited again on the surface, have
a thin‐tailed (e.g., exponential or Gaussian) distribution
[e.g., Ganti et al., 2010; Schumer et al., 2009]. However,
for the reasons discussed in the introduction, the distribution
of step lengths of sediment particles may be heavy tailed;
that is, they have a small but significant chance of traveling
a large distance downslope. In such cases, the sediment flux
at a point x has a significant contribution from a large
upslope distance and thus a local computation of flux, such
as that of equation (1), is no longer appropriate. Recently, a
particle‐based model for sediment transport on hillslopes
was developed based on a plausible set of rules capturing
disturbance‐driven transport processes and it was shown
that a heavy‐tailed step length distribution can emerge due
to the interactions between these disturbances and micro-
topography [Tucker and Bradley, 2010]. Here, we develop a
continuum constitutive model for such a behavior. Specif-
ically, we propose a notion of nonlocal sediment flux which
takes into account the heavy tails in step lengths of sedi-
ment particles by expressing the sediment flux at a given
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point as a weighted average of the upslope topographic
attributes:

qs*ðxÞ ¼ �K*

Zx

0

gðlÞrhðx� lÞdl ð7Þ

where q*s (x) is sediment flux (volume per unit time per unit
width: L3/L/T) at location x (where x is distance from the
ridgetop), K* is the diffusivity coefficient, h(x) is the
topographic elevation at location x, and g(l) is a kernel
performing a weighted average of local gradients upslope of
the point of interest x as they contribute to the sediment flux
at the point x (Figure 1). This is a special case of the more
general convolution Fickian flux laws [Cushman, 1991,
1997]. It has been shown [Cushman and Ginn, 2000] that
when the weighting function g(l) has no characteristic length
scale, i.e., when g(l) decays as a power law with the lag l,
g(l) ∼ l1‐a, (7) takes the form of a fractional derivative:

qs*ðxÞ ¼ �K*r��1hðxÞ ð8Þ

where a2(1,2). Substituting (8) in the continuity equation (2)
and making the assumption that bulk densities of rock and
sediment are equal, leads to a fractional diffusion equation:

@h

@t
¼ U þ K*r�h ð9Þ

[8] The order of differentiation, a, directly relates to the
heaviness of the distribution of step lengths [Meerschaert
et al., 1999, 2001; Schumer et al., 2001, 2009] and 1 <
a < 2 implies a distribution of step lengths with a finite
population mean but infinite population variance (sample
variance that diverges unstably as the number of samples
increases) [Lamperti, 1962], resulting in an accelerated dif-
fusion (superdiffusion). It is noted that for a = 2, (8) becomes
the standard Fickian flux (1), and (9) collapses to the linear
diffusion equation (3).
[9] The concept of nonlocal transport, implemented via

fractional derivatives or Continuous Time Randon Walk
(CTRW) models, has been extensively used in other fields
of study, such as subsurface transport [e.g., Benson et al.,
2000a; Berkowitz et al., 2002], transport of pollutants in
rivers [Deng et al., 2005, 2006], hydrodynamics [e.g.,Metzler
and Compte, 2000], statistical mechanics [e.g., Bouchaud and
Georges, 1990; Pekalski and Sznajd‐Weron, 1999; Shlesinger
et al., 1995], molecular biology [e.g.,Campos et al., 2006] and
turbulence [e.g., Biler et al., 1998; Woyczynski, 1998].
Recently, it has been used in geomorphology to encapsulate
the nonlocality of bed sediment transport along bedrock
channels [Stark et al., 2009] and to model the anomalous
diffusion of tracer particles in gravel streams and sand bed
rivers [Ganti et al. 2010; Bradley et al., 2010]. A review of
the application of partial fractional differential equations to
the transport of solutes and sediment can be found in the work
of Schumer et al. [2009].

3. Equilibrium Hillslope Profiles for Nonlocal
Transport

[10] In order to derive the equilibrium hillslope profile for
the fractional diffusion equation (9) we note that under

dynamic equilibrium, the steady state 1‐D equation can be
written as

@h

@t
¼ 0 , d�h

dx�
¼ � U

K*
ð10Þ

[11] The two most commonly used definitions of a frac-
tional derivative are the Riemann‐Liouville and the Caputo
forms [Miller and Ross, 1993]. These forms differ from each
other in that the Riemann‐Liouville definition expresses the
fractional derivative as an integer order differential of a
fractional integral (equation (11a)), whereas the Caputo
definition expresses the fractional derivative as a fractional
integral of an integer order derivative (equation (11b)):

d�h

dx�
¼ dn

dxn
In��
x hðxÞ� � ð11aÞ

d�h

dx�
¼ In��

x

dnhðxÞ
dxn

� �
ð11bÞ

where n is an integer such that n – 1 < a < n and Ix
n‐a(·) is a

fractional integration operator of order n ‐ a. This distinction
is important in the case of boundary‐valued and initial‐
valued problems as the Riemann‐Liouville definition
requires the calculation of the derivatives of the fractional
integrals of the function at the initial value, whereas the
Caputo definition only requires the calculation of initial
values of the function and its integer derivatives (see Voller
and Paola [2010] for a detailed discussion). It is further
worth noting that the Caputo fractional derivative (equation
(11b)) of a constant is zero, and in this form a fractional
integral and a fractional derivative are commutative, whereas
the Riemann‐Liouville fractional derivative (equation (11a))
of a constant is a power law. Specifically, the a‐order frac-
tional integral of a constant c is a power function:

I�x fcg ¼ c

Gð1þ �Þ x
� ð12Þ

where Ix
a{·}is the fractional integral operator of order a, c is a

constant and G(·) is the gamma function [Oldham and
Spanier, 1974]. Implementation of the fractional derivative
on a finite domain 0 ≤ x ≤ L with boundary conditions, re-
quires defining the functional value h(x) beyond the left
boundary that is for x < 0. In a boundary‐valued problem, the
Caputo form of the fractional derivative assigns the values of
the function (in this case h(x)) beyond the boundary to be
equal to the value of the function at the boundary, i.e., it
inherently assumes that h(‐1) up to h(0) are assigned the
value of h(0) = Htop. This, however, is physically unreason-
able as no sediment is supplied at the ridge from any point
beyond the ridge. In order to circumvent this issue we
numerically evaluate the steady state equilibrium hillslope
profiles predicted by equation (10).
[12] A fractional derivative can be discretized using the

one‐shift Grünwald expansion [Meerschaert and Tadjeran,
2004]:

d�hðxÞ
dx�

� 1

Dx�
XN
k¼0

gkhðx� kDxþDxÞ ð13Þ
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where gk are the one‐shift Grünwald weights, Dx is the
spatial step size in the numerical implementation, N is the
number of node points upslope of the given point and 1 < a ≤
2 is the order of differentiation. The Grünwald weights are
given by the following expression [Grünwald, 1867;
Meerschaert and Tadjeran, 2004]:

gk ¼ Gðk � �Þ
Gð��ÞGðk þ 1Þ ð14Þ

Imposing the boundary conditions

hð0Þ ¼ Htop ¼ U

Gð1þ �ÞK*
L�

dh

dx

����
x¼0

¼ 0
ð15Þ

such that h(L) = 0 at the river edge, and imposing an
additional condition that h(x) = 0 for x < 0 (since there is no

sediment supply to the domain from any point beyond the
ridge), one can solve numerically for the steady state
equilibrium hillslope profiles predicted by equation (10).
Figure 2a shows the hillslope equilibrium profile for frac-
tional transport with degree of nonlocality a = 1.5. It is
noted that the hillslope profile is parabolic close to the ridge
and transitions to a power law with an exponent of a.
[13] It is worth noting that under the Caputo form of the

fractional derivative (which assumes that the values of h(x) =
Htop for x < 0), equation (10) can be solved analytically. The
analytical solution of equation (10) with the boundary
conditions (15) and h(x) = Htop for x < 0 is given as

hðxÞ ¼ Htop � U

G 1þ �ð ÞK*
x� ð16Þ

where x is the horizontal distance from the ridgetop, and
Htop is the elevation of the ridgetop. As shown in Figure 2b,
this solution is reached in the numerically evaluated profile
(which assumes h(x) = 0 for x < 0) only at a finite distance
downslope of the ridge when enough upslope topographic
distance exists for the nonlocal contribution to substantially
contribute to the sediment flux at a given point. Hence
overall, the steady state hillslope equilibrium profile is par-
abolic near the ridgetop and becomes, shortly after, a power
law profile with an exponent a (given by equation (16)).
Further, we note that the steady state solution to the fractional
diffusion equation predicts power law relationships of local
gradient and curvature with downslope distance given by

�rh � x��1 ð17Þ

r2h � x��2 ð18Þ

That is, the fractional flux law predicts that curvature
downslope of the ridge is not constant but decreases with
downslope distance in a manner dictated by the exponent a
(such a decrease has been documented, for example, in field
observations in the work of Roering et al. [1999]). For a = 2
the nonlocal transport model reproduces the linear profile in
gradient and constant curvature with downslope distance, as
expected for linear diffusive transport, while values of a
between 1 and 2 give the flexibility of reproducing a suite of
observed hillslope profiles. In section 4, we analyze field
data from several real hillslopes and show that they are
consistent with the nonlocal hypothesis of sediment flux.

4. Observed Hillslope Profiles Interpreted Within
the Nonlocal Transport Theory

[14] The one‐dimensional nonlocal theory presented here
applies to hillslope profiles in which transport is assumed to
be only along that profile, i.e., a one‐dimensional approxi-
mation. Hillslopes, however, typically have significant
contour (planform) curvature (i.e., ridges and hollows) and
at steady state such curvature can accommodate the
increasing soil production that must be carried downslope
such that a single profile along the hillslope can be straight
even in the case of linear flux‐dependent transport and
spatially constant erosion rates. Only a few detailed studies

Figure 2. Steady state hillslope equilibrium profile pre-
dicted from fractional diffusive transport (equation (9))
with a = 1.5 and boundary conditions of zero slope at the
ridge and zero elevation at the most downslope point. The
parameter of the model K* was chosen to be 1.0 m1.5/yr and
the rock uplift rate was set to unity [m/yr] (Note that a
different value of rock uplift rate would not change the
shape of the profile but only its absolute elevation would
differ). (a) Profile shape and (b) log‐log plot of vertical drop
from the ridge top versus downslope distance. Notice the
transition to a power law profile with exponent a = 1.5 at a
distance of approximately 3 m from the ridgetop (arrow).
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of hillslope form and process have been reported on hill-
slopes without significant planform curvature. Here we
reexamine three well‐known study sites (one clearly lacking
planform curvature) and interpret them within the proposed
nonlocal flux theory.
[15] Roering et al. [1999] motivate their work on non-

linear flux laws by reporting hillslope profiles in the Oregon
Coast Range that clearly deviate from parabolic shape or
constant curvature. Their study site experiences large scale
disturbances due to massive tree throw mounds [Heimsath et
al., 1999], mammal burrowing and periodic fire [Roering
and Gerber, 2005] and there is evidence for approximate
steady state with considerable local variation over time scales
of hillslope soil adjustment and development [Roering, et al.,
1999; Heimsath et al., 2001; Reneau and Dietrich, 1991].
One of their profiles is shown in Figure 3a and the log‐log
plot of elevation fall versus horizontal distance (Figure 3b)
suggests a slope of 1.3 for distances beyond 10 m down-
slope of the ridgetop and a slope of 2 close to the ridge (only
3 points are shown in Figure 3b at distance 0 to 10 m, but
the slope of 2 is supported by more points obtained from the

interpolated profile shown by the dashed line in Figure 3a).
This profile is consistent with the nonlocal flux hypothesis
and suggests that the nonlocal transport model proposed
herein might be an alternative to the nonlinear model of
Roering et al. [1999]. The conceptual bases of these two
models are fundamentally different as they hypothesize
different mechanisms of erosion and transport. This profile
will be further analyzed in section 5.
[16] In their seminal paper on the geomorphology and

forest ecology of the Shenandoah River area of Virginia,
Hack and Goodlett [1960] report the result of plotting fall
against distance for both their intensely surveyed study site
and for a broad survey of 27 hillslopes in the Appalachians
in Maryland and Virginia. They propose that the many
regularities of the landforms and soils in the studied regions
suggest steady state landscape adjustment. Ignoring the data
points close to the divide, they report log‐log linear profiles
with a slope of 1.23 for the survey site and values ranging
from close to 1 up to 1.7 for Maryland and Virginia. It is not
clear how the broad survey data were collected (in the field
versus from available topographic maps), nor whether they
avoided slopes with planform curvature, but it is worth
noting that the profiles do not include data points near the
divide. They conclude that steeper hillslopes are generally
straight (a values close to 1) and gentle ones more curved
(a values closer to 2). Within our theory, this would suggest
nonlocal transport on steeper hillslopes and local transport
(linear diffusion) on gentle slopes. Hack and Goodlett
[1960] describe soil transport as being driven by “growing
roots, burrowing animals, falling raindrops, frost, tree
blowdowns and the like” (p. 58). These processes would
create a wide range of transport distances for a given slope.
Specific localities and erosion rates for the hillslope profiles
are not reported, so we must consider this suggestion as only
a possibility, not an established condition.
[17] McKean et al. [1993] selected a hillslope transect

with minimal planform curvature in the grasslands east of
San Francisco, CA underlain by marine shales and docu-
mented soil transport rates using 10Be concentrations in the
clay‐rich soils (Figure 4). From analysis of three soil pits
within the first 35 m of hillslope length (from the ridge) they
found evidence for a linear flux law and quantified the
diffusive rate constant K (i.e., equation (1)). The soil
transport occurs by seasonal creep of the high‐plastic clay
with biogenic transport being of some importance near the
divide. Soil thickness varies inversely with curvature, con-
sistent with a balance between soil production and linear
transport [Yoo et al., 2005, 2006]. The thickness is about
40 cm near the ridge and then increases downslope.
Boundary conditions (channel incision rate and history)
strongly influence hillslope profiles and at this study site the
hillslope terminates in a broad, aggraded valley, which has
led to a break in slope at the base of the hillslope and
progressive thickening of soil toward the valley axis [Yoo et
al., 2005]. Both Yoo et al. [2005] and McKean et al. [1993]
suggest that the upper smoothly convex hillslope could be at
approximate steady state erosion, that is, the effect of sta-
bilization of the lower boundary has not reached to the
divide.
[18] We used the survey data collected by McKean et al.

[1993] to construct the longitudinal profile reported in

Figure 3. (a) A hillslope profile in the Oregon Coast
Range. Solid circles represent the observed data points
(reproduced from Roering et al. [1999]) and the dashed
line indicates a spline fit to the observations. (b) Log‐log
plot of the fall from the hilltop versus horizontal distance for
the above profile. Notice the power law profile with expo-
nent 1.3 starting at a distance of 9 m from the ridgetop
(arrow) consistent with a nonlocal transport law with
parameter a = 1.3.
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Figure 4a. By plotting on a log‐log scale the elevation fall
versus horizontal distance from the ridge (Figure 4b) we
observe a slope of ≈1.8 from a distance of 8 m from the
ridgetop up to approximately 25 m downslope; in the first
8 m from the ridgetop one would expect a parabolic profile
(slope of 2). The hillslope rapidly flattens upslope from 8 m
and the available survey data do not provide adequate
constraint on the profile shape. The gentle hillslope gradient
and high clay content (which favors creep) and the dry,
grassy, relatively low biota mantle on the convex hilltop all
would favor an almost local transport, and the slope value of
1.8 extending for the first 25 m is consistent with this
expectation. Downslope of 50 m to the lowest portion of the
hillslope surveyed the slope of the power law plot of ele-
vation against distance is ≈1.2. This transition is not con-
sistent with the nonlocal flux law of a = 1.8 discussed
above; rather the bottom part of the hillslope is interpreted
as experiencing a change from net erosion to progressive
soil accumulation (due to lower boundary conditions) and
field observations support this interpretation. This example
illustrates that the nonlocal flux theory can also be used as a

diagnostic tool for inferring process from form and further
motivate data collection to test alternative hypotheses.

5. Nonlocal Versus Nonlinear Flux: Same
Behavior for Different Reasons

5.1. Nonlinear Transport Model as an Emulator
of Superdiffusivity

[19] Deviation from purely diffusive behavior in many
hillslopes has prompted the development of more complex
transport laws which have a nonlinear dependence on
topographic gradient. A review of several of these laws can
be found in the work of Dietrich et al. [2003]. For example,
for soil mantled hillslopes, Roering et al. [1999] proposed
the following flux equation [see also Andrews and
Buckman, 1987; Howard, 1994]:

q0s ¼
Krh

1� ðj rh j =ScÞ2
ð19Þ

where q′s is the sediment flux calculated at a point via the
nonlinear flux law, K is the diffusivity coefficient, and Sc is
called the “critical gradient.” It is noted that the above
equation imitates a superdiffusive behavior, that is, close to
linear diffusion at low slopes and accelerated diffusion at
high slopes. Although this can be directly seen from (19), it
is interesting to see it from a different perspective. By
substituting (19) in (2) and performing a Taylor series
expansion we obtain

@h

@t
¼ Kr2hþ K

r2h

S2c
ðj rh jÞ2 þ . . . ð20Þ

The second term in the RHS of (20) shows that the nonlinear
transport law of (19) captures the superdiffusive behavior at
high slopes by enhancing the regular diffusion with the
addition of a term that has an explicit nonlinear dependence
on gradient. The gradient in the above equation is “local.”
We propose that such superdiffusive behavior in steep
hillslopes can be addressed using nonlocal transport laws,
which are linear (i.e., they involve only linear combinations
of local gradients) but take into account that disturbances
contributing to sediment flux at a point of interest have an
origin far upslope of that point. It is interesting to note that
the proposed nonlocal flux law gives rise to a nonlinear
dependence of sediment flux on the local gradient at any
point (this will be presented in section 5.2) but for reasons
different than the explicit quadratic dependence of flux on
local gradient as in equation (20).

5.2. Nonlocality Gives Rise to a Nonlinear Dependence
of Flux on Local Gradient

[20] We use the Roering et al. [1999] hillslope profile
from the Oregon Coast Range to illustrate the computation
of the sediment flux from the nonlocal transport model of
(8) and compare it to those of the linear (1) and nonlinear
(19) models. In order to have a continuous set of elevation
data points over the domain of interest, the observations
were interpolated using a spline as shown in Figure 3a with
dashed lines.

Figure 4. (a) Longitudinal profile of a hillslope reproduced
from the survey data collected by McKean et al. [1993].
(b) Log‐log plot of the fall from the hilltop versus horizontal
distance. Notice the power law regime with exponent 1.8
starting at approximately 8 m from the ridgetop until 25 m
downslope. This profile is consistent with a nonlocal flux
hypothesis with exponent a = 1.8. The abrupt transition to a
slope of 1.2 on the lower portion of the hillslope is indica-
tive that this part is still experiencing changes from net
erosion to progressive soil accumulation.
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[21] The computation of the fractional flux was performed
on a discrete grid of size Dx by the Grünwald‐Letnikov
discrete approximation of the fractional integral operator
given as [Grünwald, 1867; Podlubny, 1999]

r��1hðxÞ ¼ I2��
x frhðxÞg

¼ lim
Dx!0

ðDxÞ2��
Xx=Dx

k¼0

Gð2� �þ kÞ
k!Gð2� �Þ rhðx� kDxÞ ð21Þ

It is noted that writing the fractional flux as a fractional
integral of the local slopes (first equality in the above
equation) is enabled by use of the Caputo definition of the
fractional derivative (equation (11b)).
[22] The parameters chosen for the three flux laws (linear,

nonlinear and nonlocal) are K = 0.0015m2/yr, Sc = 1.4, a =
1.5 and K* = 0.0007ma/yr. The model parameters for the
nonlinear flux law are chosen from the ones calibrated for
Oregon Coast Range in the work of Roering et al. [1999].
For the nonlocal flux law, a is set to 1.5 and K* is chosen
such that all the three flux laws show a similar increase in
sediment flux with slope at lower gradients. This is done in
order to study the effect of the three flux laws at the higher
gradients. Figure 5 shows the sediment flux computed using
the three different flux laws. The sediment flux computed
from the nonlocal transport law (8) shows a similar behavior
as the nonlinear, local transport law (equation (19)), with
enhanced diffusion at higher gradients. Hence, a nonlinear
relationship between sediment flux and local gradient can
also arise from a nonlocal, linear flux model. It is empha-
sized that in a real hillslope, the parameters K for the non-
linear model and K* for the nonlocal model are obtained via
calibration; the unfamiliar units of K* (La/T) are not an issue
and simply reflect that the quantity (K*t)1/a maintains the

units of length (length scale of diffusion) in analogy to the
quantity (Kt)1/2 for standard diffusion [see, e.g., Benson,
1998].

5.3. Nonlocality and Upslope “Region of Influence”

[23] The nonlocal transport law differs from any local
transport law (linear or nonlinear) in that in the former, the
sediment flux contribution to a given point on the hillslope
is computed from a weighted average of the topographic
gradients upslope of that point. Therefore, unlike the local
transport laws, the nonlocal transport law has a “memory” of
the upslope topography. Although the power law kernel g(l)
of the nonlocal integral flux (equation (7)) implies lack of
characteristic scale over which the averaged gradient is
computed, we take the liberty below to introduce a cutoff
scale in order to illustrate this upslope influence effect.
Specifically, we introduce a physically tangible measure of
nonlocality for the computation of sediment flux by defining
an influence length, La, as the distance upslope from a given
point, beyond which the contribution of the sediment flux is
less than 10% of the total; that is, La is defined by the
equation

K*
ZL�
0

gðlÞrhðx� lÞdl � 0:9qs*ðxÞ; 1 < � < 2 ð22Þ

where g(l) ∼ l1‐a are the weights given to the gradients
uplsope and q*s is the nonlocal flux calculated by (8). The
cutoff of 10% is chosen here arbitrarily to illustrate the
behavior of nonlocal flux and it can be chosen to be lower or
higher depending on the problem at hand.
[24] The influence length was calculated for the Roering

et al. [1999] profile from equation (22) for three different
values of a and is shown in Figure 6. The degree of non-
locality increases with a decrease in a; that is, the closer the
value of a is to 1.0 the more nonlocal the transport is
compared to a value of a closer to 2. As expected, a higher
degree of nonlocality results in a larger value of La as seen
in Figure 6. For a = 2, equation (22) is not applicable for
computation of the influence length. In this case, the step

Figure 5. Comparison of the three flux laws. The dashed
line shows the sediment flux predicted by linear, local flux
law (equation (1)). The thick line shows the sediment flux
predicted by the linear, nonlocal law (equation (8)), and
the thin line shows the sediment flux predicted by local,
nonlinear law (equation (19)). The parameters for q′s are
chosen to be K = 0.0015m2/yr and Sc = 1.4 (from Roering
et al. [1999]). The parameters for the calculation of q*s are
chosen to be a = 1.5 and K* = 0.0007m1.5/yr.

Figure 6. Plot showing the upslope influence length La
(see text for definition) as a function of local gradient and
degree of nonlocality for the hillslope of Roering et al.
[1999]. The dashed line indicates the distance to the ridge-
top, in other words, the maximum available distance to take
part in the transport.
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lengths have a thin‐tailed distribution whose characteristic
scale (standard deviation) can be used to define the influ-
ence length.

6. Nonlocality Naturally Reproduces Spatial
Variability of Sediment Flux

[25] In section 5, all the flux laws were discussed in the
context of a single hillslope profile. However, even in a
small hillslope, there exists considerable variability in the
form of hillslope profiles which results in a considerable
variability in the observed sediment flux. This flux vari-
ability was documented by Roering et al. [1999] for the
MR1 basin of Oregon Coast Range. They computed the
sediment flux using

qs ¼ U
�r
�s

a

b
ð23Þ

where U is the constant rock uplift rate, rr and rs are bulk
densities of rock and sediment, respectively, and a/b is the
drainage area per unit contour length, and compared it
against the flux computed from their nonlinear transport
model. Figure 7 (reproduced from Roering et al. [1999])
shows the spread of the computed sediment flux as a
function of gradient. Notice that for a given gradient, say for
a gradient of 0.8 there is an order of magnitude variability in
the computed flux. To describe this variability with the
nonlinear law, equation (19), the calibrated parameters of
the model had to vary considerably: K = 0.0015m2/yr to
0.0045m2/yr and Sc = 1.0 to 1.4 as reported by Roering et al.
[1999]. We note that Sc is a calibration parameter which was
attached a physical meaning of a critical slope and was
related to the angle of repose in the work of Roering et al.
[1999]; later in the work of Roering and Gerber [2005] it

was proposed that K increased and Sc decreased in response
to forest fire.
[26] Here we pose the hypothesis that a nonlocal transport

model can capture the observed variability of sediment flux
within a given hillslope by a single or very narrow range of
parameters, unlike any local transport law. To test the
hypothesis, we generated a set of hillslope profiles using
different cubic polynomials (see Figure 8) to imitate the
natural variability of hillslope profiles within a small basin.
Along those profiles the sediment flux was computed using
the nonlocal, linear flux model (equation (8)) and local,
nonlinear flux model (equation (19)). Figure 9 shows the
computed sediment flux as a function of the local gradient.

Figure 7. Reproduced from Roering et al. [1999] to
illustrate the large natural variability of calculated sediment
flux (dots) even in a small hillslope (MR1 basin in Oregon
Coast Range; sediment flux calculated using equation (23))
and the wide range of fitted parameters K (m2/yr) and Sc that
would be needed to reproduce the observed variability under
the assumption of a nonlinear local transport law.

Figure 8. Plot showing the suite of generated hillslope pro-
files to imitate the natural variability of profiles (flow paths
perpendicular to contour lines) in a zero‐order basin. The
thick line indicates the profile reproduced from Roering et
al. [1999].

Figure 9. Sediment flux computed on the suite of hillslope
profiles (shown in Figure 8) using the linear, nonlocal
transport law (equation (8)) with parameters a = 1.5 and
K* = 0.0007ma/yr (open circles). Note that while these para-
meters are kept constant, a large variability of the sediment
flux is produced due to the variability in the ensemble of
profiles. In order to reproduce this variability with the
nonlinear transport law (equation (19)), the range of fitted
parameters required (concentrating on the higher gradients
where the nonlinear transport law is more pertinent; see also
Figure 7) is K = 0.00195m2/yr and Sc = 1.4 and K =
0.00275m2/yr and Sc = 1.25 (broken lines).
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The nonlocal transport law with a single set of parameters
K* and a produces a variability of sediment flux for a given
gradient comparable to that observed in real hillslopes
(Figure 7). However, the local transport law cannot repro-
duce this variability with a single set of parameters K and Sc
but requires a considerable range of parameter values as
indicated by the envelope curves in Figure 9. This is simply
because two points with the same local slope would result in
the same flux from any local transport law but different
fluxes from a nonlocal law, due to different upslope
topography. Having the need for such a wide range of
parameters to reproduce the sediment flux variability in a
small hillslope makes physical interpretation of those para-
meters difficult. Apart from the upslope hillslope profile
variability considered here, there are other factors contrib-
uting to the sediment flux/local gradient variability, such as,
for example, the dependence of K on soil depth [e.g.,
Roering, 2008].

7. Probability Distribution of Particle
Displacement and Fractional Transport

[27] Sediment transport on hillslopes can be thought of as
disturbance driven, in which soil is mobilized en masse or as
individual particles. A single disturbance event may move
the mobilized sediment a considerable distance (e.g., rav-
eling after a fire). Disturbed piles of sediment (e.g., tree
throw mounds) will create sustained local areas of elevated
flux and increased downslope delivery. For simplicity we
can think of event‐based transport as a kind of “hopping”
process, where the sediment moves downslope in a series of
steps resulting from local disturbances. Here a single hop
can be thought of as the distance covered by a grain of
sediment from where disturbance has displaced it into an
active flux state to where it comes to transient rest (until
next disturbance). It can also be thought of as a package of
sediment made significantly more active due to local
mounding and exposure, say during a tree throw, which
results in rapid flux compared to what would happen under
mean slope conditions. As discussed in the introduction,
many processes generate slope‐dependent transport and
operate over a wide range of distances. These processes may
result in a heavy‐tailed PDF of the sediment “hops” or
displacement distance [see also Tucker and Bradley, 2010],
which means that there is a relatively small but significant
possibility that sediment grains will move a great distance
downslope in a single hop. In other words, these distances
do not have a characteristic length scale and may assume
values comparable to the size of the hillslope itself.
[28] If the PDF of hopping distances were thin tailed, e.g.,

Gaussian or exponential with an e‐folding distance small
relative to the size of the hillslope, then the continuum
equation describing the evolution of the hillslope would be
the diffusion equation [Feller, 1971; Schumer et al., 2009].
However, if the probability distribution of hopping distances
is broad tailed as argued above, then a faster than linear
diffusion is expected. It turns out that, since a sum of broad‐
tailed pdfs results in an a stable distribution for the hopping
process [Feller, 1971], then the governing equation of ele-
vation change consistent with this distribution is the frac-
tional diffusion equation (9) [Meerschaert et al., 1999,
2001; Schumer et al., 2009]. That is, the corresponding

macroscopic process of sediment transport can be described
using a modified diffusion equation where the r2 operator
is replaced with a nonlocal operator ra. The degree of
nonlocality is governed by the order of differentiation, a.
The lower the value of a, the greater is the degree of non-
locality. This is a manifestation of the fact that an a stable
PDF has a heavier tail for lower values of a.

8. Locality and Scale Dependence of Computed
Flux

[29] In this section we discuss some preliminary ideas
related to the potential of nonlocal transport laws to cir-
cumvent the problem of scale dependence of sediment flux
computations. We start with the classical divergence theo-
rem and elementary control volume which is of little use
when there is no characteristic scale in particle displacement
distances. Then, we allude to the fact that local transport
laws suffer from scale dependencies which would require
closures [see, e.g., Passalacqua et al., 2006] and which can
be naturally taken care of by the nonlocal transport laws.
[30] The advection‐dispersion equation (ADE) is based on

the classical definition of divergence of a vector field. The
divergence is defined as the ratio of total flux through a
closed surface to the volume enclosed by the surface when
the volume shrinks to zero [e.g., Schey, 1992] (see also
Benson [1998] for an exposition relevant to subsurface
transport):

r � qs ¼ lim
V!0

1

V

ZZ
S

qs � �dS ð24Þ

where qs is a vector field, V is an arbitrary volume enclosed
by surface S, and h is a unit normal vector. Implicit in this
equation is that the limit of the integral exists; that is, the
vector qs exists and is smooth as V→0.
[31] The classical notion of divergence maintains that, as

an arbitrary control volume V shrinks to zero, the ratio of
total surface flux to volume must converge to a single value.
However, when a heavy‐tailed distribution of displacement
lengths exists, this notion of convergence is challenged. In
fact, due to the lack of a characteristic scale of the dis-
placement distances, no convergence is guaranteed when the
size of the control volume changes. As a result, the classical
diffusion equation is no longer self‐contained with a closed
form solution at all scales. To adopt the classical theory, the
best approximation that can be done is to assume that the
total flux to volume ratio can be assumed piecewise constant
within small ranges of scales, allowing one to talk about an
“effective” scale‐dependent dispersion coefficient [see, e.g.,
Benson, 1998]. Several techniques have been proposed in
the subsurface transport literature to tackle the problem of
scale‐dependent dispersivity. These vary from small per-
turbation approaches and effective parameterizations [e.g.,
Gelhar and Axness, 1983; Dagan, 1997], to power law
dependence of D on scale [e.g., Su, 1995], to volume sta-
tistical averaging [e.g., Cushman, 1991, 1997] and to frac-
tional advection‐dispersion equations (fADE) [e.g., Benson,
1998; Benson et al., 2000b; Baeumer et al., 2001; Schumer
et al., 2001, 2009].
[32] Any sediment transport law that directly involves a

“local” gradient or curvature in the computation of flux, will
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be scale dependent as gradients and curvatures depend on
the scale at which they are computed [see, e.g., Lashermes et
al., 2007]. For example, this was demonstrated by
Passalacqua et al. [2006] using a local nonlinear flux law (a
Langevin model which has square dependence on local
slope). In that study, the development of a closure term, akin
to the Large Eddy Simulation (LES) turbulence closures,
was proposed to handle this scale dependence and the clo-
sure term was shown to have a power law dependence on
scale (grid size). The proposed nonlocal fractional diffusive
model has in principle the ability to remove this scale
dependency as it is free of any “representative” or “control
volume” concept and the power law integration of local
gradients (see equation (21)) eliminates the need for the
aforementioned power law closure [see, e.g., Foufoula‐
Georgiou et al., 2008]. This issue requires further study.

9. Discussion and Conclusions

[33] Most geomorphic transport laws proposed to date are
local in character; that is, they express the sediment flux or
erosion at a point as a function of the elevation gradient,
contributing drainage area, or other geomorphic quantities at
that point only. For the case of soil‐mantled landscapes, it is
reasonable to propose that disturbance processes inducing
transport have widely varying transport distances and this
gives rise to a nonlocality of sediment transport, as proposed
here. As summarized below, we see several advantages to
the nonlocal transport law.
[34] 1. The proposed nonlocal transport model with

boundary conditions of zero slope at the ridgetop and con-
stant elevation at the ridge bottom predicts a steady state
profile which is parabolic very close to the ridgetop and
changes, after a short distance downslope to a power law
with exponent equal to the parameter a (order of differen-
tiation) in the fractional transport law. This prediction is
supported by data in three study sites and provides useful
insight for one of the sites which may still experience
transition from net erosion to soil accumulation.
[35] 2. The nonlocal linear model gives rise to a nonlinear

relationship between the sediment flux at a point and the
local slope. Hence, nonlocality of sediment flux is an
alternative hypothesis that can explain the observed hill-
slope profiles and the nonlinear flux dependence on slope.
[36] 3. In a practical implementation of a local sediment

flux law (linear or nonlinear), the “local” slope is always
assigned a “scale” over which some smoothing or averaging
is done, without however a theory as to how to select this
scale. The nonlocal flux law is scale free (it lacks a char-
acteristic scale of upstream particle displacement distance);
rather it uses a “power law weighted average slope” stating
that upslope hillslope gradients matter to local flux, but with
diminishing influence as a function of upslope distance.
[37] 4. The proposed nonlocal model produces significant

variability of sediment flux for a given local slope, as it
explicitly takes into account variations in upslope topogra-
phy. In this case, transport parameters, such as K*, can
remain constant, and retain, perhaps, a stronger physical
meaning while reproducing the variability observed in real
hillslopes.
[38] 5. The nonlocal model has the potential to eliminate

scale dependency. The usefulness of nonlocal fractional

models to address issues of scale dependence in subsurface
transport (e.g., scale‐dependent dispersivity in porous media
with multiple scales of heterogeneity) has been amply
demonstrated and needs to be explored for similar problems
on the Earth’s surface.
[39] We consider this paper as the beginning of a dialogue

on concepts of nonlocality and collective behavior as they
relate to transport on the earth’s surface. Important questions
arise as to how these concepts can most concisely be ex-
pressed in or incorporated into new classes of geomorphic
transport laws and also how nonlocality can be directly
verified from observations. Together with several other pa-
pers in this issue, a new direction of thinking emerges which
shows promise for better understanding of cause and effect
in landscape processes and landscape evolution models.

[40] Acknowledgments. This research was supported by the
National Center for Earth‐surface Dynamics (NCED), a Science and Tech-
nology Center funded by NSF under agreement EAR‐0120914NGA, as
well as by an NSF grant EAR‐08224084. The authors would like to
acknowledge the stimulating discussions during the Stochastic Transport
and Emerging Scaling on Earth’s Surface (STRESS) working group meet-
ing (Lake Tahoe, November 2007) cosponsored by NCED and the Water
Cycle Dynamics in a Changing Environment hydrologic synthesis project
(University of Illinois, funded under agreement EAR‐0636043). We also
thank Mark Meerschaert, Josh Roering, Greg Tucker, and Nate Bradley
for helpful discussions during the course of this work as well as Colin Stark
and two anonymous referees for insightful comments which helped
improve our presentation. The second author acknowledges the support
of an interdisciplinary doctoral fellowship provided by the graduate school
and Institute on Environment (IonE) at the University of Minnesota.

References
Andrews, D. J., and R. C. Buckman (1987), Fitting degradation of shoreline
scarps by a nonlinear diffusion model, J. Geophys. Res., 92(B12),
12,857–12,867, doi:10.1029/JB092iB12p12857.

Baeumer, B., D. Benson, M. Meerschaert, and S. Wheatcraft (2001), Sub-
ordinated advection‐dispersion equation for contaminant transport,Water
Resour. Res., 37(6), 1543–1550, doi:10.1029/2000WR900409.

Benson, D. (1998), The fractional advection‐dispersion equation: Develop-
ment and applications, Ph.D. thesis, Univ. of Nevada, Reno.

Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000a), Appli-
cation of a fractional advection‐dispersion equation, Water Resour. Res.,
36(6), 1403–1412, doi:10.1029/2000WR900031.

Benson, D. A., S. W. Wheatcraft, and M. M. Meerschaert (2000b), The
fractional‐order governing equation of Lévy motion, Water Resour.
Res., 36(6), 1413–1423, doi:10.1029/2000WR900032.

Berkowitz, B., J. Klafter, R. Metzler, and H. Scher (2002), Physical pictures
of transport in heterogeneous media: Advection‐dispersion, random‐
walk, and fractional derivative formulations, Water Resour. Res., 38(10),
1191, doi:10.1029/2001WR001030.

Biler, P., T. Funaki, and W. Woyczynski (1998), Fractal Burgers equations,
J. Differential Equations, 148, 9–46, doi:10.1006/jd equation 1998.3458.

Bouchaud, J.‐P., and A. Georges (1990), Anomalous diffusion in disor-
dered media: Statistical mechanisms, models and physical applications,
Phys. Rep., 195(4–5), 127–293, doi:10.1016/0370-1573(90)90099-N.

Bradley, D. N., G. E. Tucker, and D. A. Benson (2010), Fractional disper-
sion in a sand‐bed river, J. Geophys. Res., 115, F00A09, doi:10.1029/
2009JF001268.

Campos, D., J. Fort, and V. Mendez (2006), Transport on fractal river net-
works: Application to migration fronts, Theor. Popul. Biol., 69, 88–93,
doi:10.1016/j.tpb.2005.09.001.

Culling, W. E. H. (1960), Analytical theory of erosion, J. Geol., 68, 336–
344, doi:10.1086/626663.

Cushman, J. H. (1991), On diffusion in fractal porous media,Water Resour.
Res., 27(4), 643–644, doi:10.1029/91WR00162.

Cushman, J. H. (1997), The Physics of Fluids in Hierarchical Porous
Media: Angstroms to Miles, 467 pp., Kluwer Acad., Norwell, Mass.

Cushman, J. H., and T. Ginn (2000), Fractional advection‐dispersion equa-
tion: A classical mass balance with convolution‐Fickian flux, Water
Resour. Res., 36(12), 3763–3766, doi:10.1029/2000WR900261.

FOUFOULA‐GEORGIOU ET AL.: NONLOCAL THEORY OF SEDIMENT TRANSPORT F00A16F00A16

11 of 12



Dagan, G. (1997), Subsurface Flow and Transport: A Stochastic Approach,
Cambr idge Univ . P res s , Cambr idge , Mass . , do i :10 .1017 /
CBO9780511600081.

Darwin, C., (1881), The Formation of Vegetable Mould Through the Action
of Worms, John Murray, London.

Deng, Z. Q., J. L. M. P. de Lima, and V. P. Singh (2005), Fractional kinetic
model for first flush of stormwater pollutants, J. Environ. Eng., 131(2),
232–241, doi:10.1061/(ASCE)0733-9372(2005)131:2(232).

Deng, Z. Q., J. L. M. P. de Lima, M. I. P. de Lima, and V. P. Singh (2006),
A fractional dispersion model for overland solute transport, Water
Resour. Res., 42, W03416, doi:10.1029/2005WR004146.

Dietrich, W. E., D. G. Bellugi, L. S. Sklar, J. D. Stock, A. M. Heimsath,
and J. J. Roering (2003), Geomorphic transport laws for predicting land-
scape form and dynamics, in Prediction in Geomorphology, Geophys.
Monogr. Ser., vol. 135, edited by P. Wilcock and R. Iverson, pp. 103–
132, AGU, Washington, D.C., doi:10.1029/135GM09.

Feller, W. (1971), An Introduction to Probability Theory and Its Applica-
tions, vol. 2, 2nd ed., Wiley, New York.

Fleming,R.W., andA.M. Johnson (1975), Rates of seasonal creep of silty clay
soil, Q. J. Eng. Geol., 8, 1–29, doi:10.1144/GSL.QJEG.1975.008.01.01.

Foufoula‐Georgiou, E., V. Ganti and P. Passalacqua (2008), Geomorphic
transport laws: Non‐local flux with classical mass balance, Rep. UMSI
2008/27, Supercomput. Inst., Univ. of Minn., Minneapolis.

Furbish, D. J., P. K. Haff, W. E. Dietrich, and A. M. Heimsath (2009), Sta-
tistical description of slope‐dependent soil transport and the diffusion‐like
coefficient, J. Geophys. Res., 114, F00A05, doi:10.1029/2009JF001267.

Gabet, E. J., D. J. Reichman, and E. W. Seabloom (2003), The effects of
bioturbation on soil processes and sediment transport, Annu. Rev. Earth
Planet. Sci., 31, 249–273, doi:10.1146/annurev.earth.31.100901.141314.

Ganti, V., M. Meerchaert, E. Foufoula‐Georgiou, E. Viparelli, and G. Parker
(2010), Normal and anomalous diffusion of gravel tracer particles in rivers,
J. Geophys. Res., 115, F00A12, doi:10.1029/2008JF001222.

Gelhar, L. W., and C. L. Axness (1983), Three‐dimensional stochastic
analysis of macrodispersion in aquifers, Water Resour. Res., 19(1),
161–180, doi:10.1029/WR019i001p00161.

Gilbert, G. K. (1909), The convexity of hilltops, J. Geol., 17, 344–350,
doi:10.1086/621620.

Grünwald, A. K. (1867), Uber “begrenzt” derivation und deren anwendung,
Z. Angew. Math. Phys., 12, 441–480.

Hack, J. T. (1960), Interpretation of erosional topography in humid temperate
regions, Am. J. Sci., 258A, 80–97.

Hack, J. T., and J. C. Goodlett (1960), Geomorphology and forest ecology
of a mountain region in the central Appalachians, U.S. Geol. Surv. Prof.
Pap., 347, 66 pp.

Heimsath, A. M., W. E. Dietrich, K. Nishilzumi, and R. C. Finkel (1999),
Cosmogenics nuclides, topography, and spatial variation of soil depth,
Geomorphology, 27, 151–172, doi:10.1016/S0169-555X(98)00095-6.

Heimsath, A. M., W. E. Dietrich, K. Nishiizumi, R. C. Finkel (2001),
Stochastic processes of soil production and transport: Erosion rates,
topographic variation, and cosmogenic nuclides in the Oregon Coast
Range, Earth Surf. Processes Landforms, 26, 531–552.

Howard, A. D. (1994), A detachment‐limited model of drainage basin evo-
lution, Water Resour. Res., 30(7), 2261–2285, doi:10.1029/94WR00757.

Kirkby, M. J. (1967), Measurement and theory of soil creep, J. Geol., 75,
359–378, doi:10.1086/627267.

Koons, P. O. (1989), The topographic evolution of collisional mountain
belts: A numerical look at the southern Alps, New Zealand, Am. J.
Sci., 288, 1041–1069.

Lamperti, J. (1962), Semi‐stable stochastic processes, Trans. Am. Math.
Soc., 104, 62–78, doi:10.2307/1993933.

Lashermes, B., E. Foufoula‐Georgiou and W. E. Dietrich (2007), Channel
network extraction from high resolution topography using wavelets,
Geophys. Res. Lett., 34, L23S04, doi:10.1029/2007GL031140.

McKean, J. A., W. E. Dietrich, R. C. Finkel, J. R. Southon, andM.W. Caffee
(1993), Quantification of soil production and downslope creep rates from
cosmogenic 10Be accumulations on a hillslope profile, Geology, 21, 343–
346, doi:10.1130/0091-7613(1993)021<0343:QOSPAD>2.3.CO;2.

Meerschaert, M. M., and C. Tadjeran (2004), Finite difference approxima-
tions of fractional advection‐dispersion flow equations, J. Comput. Appl.
Math., 172, 65–77, doi:10.1016/j.cam.2004.01.033.

Meerschaert, M. M., D. A. Benson, and B. Baeumer (1999), Multidimen-
sional advection and fractional dispersion, Phys. Rev. E, 59, 5026–
5028, doi:10.1103/PhysRevE.59.5026.

Meerschaert, M. M., D. A. Benson, and B. Baeumer (2001), Operator
Le’vy motion and multiscaling anomalous diffusion, Phys. Rev. E, 63,
021112–021117, doi:10.1103/PhysRevE.63.021112.

Metzler, R., and A. Compte (2000), Generalized diffusion‐advection
schemes and dispersive sedimentation: A fractional approach, J. Phys.
Chem. B, 104(16), 3858–3865, doi:10.1021/jp993698f.

Miller, K. S., and B. Ross (1993), An Introduction to the Fractional Calculus
and Fractional Differential Equations, J. Wiley, New York.

Norman, S. A., R. J. Schaetzl, and T. W. Small (1995), Effects of slope
angle on mass movements by tree uprooting, Geomorphology, 14, 19–
27, doi:10.1016/0169-555X(95)00016-X.

Oldham, K. B., and J. Spanier (1974), The Fractional Calculus, Academic,
San Diego, Calif.

Passalacqua, P., F. Porté‐Agel, E. Foufoula‐Georgiou, and C. Paola (2006),
Application of dynamic subgrid‐scale concepts from large‐eddy simula-
tion to modeling landscape evolution, Water Resour. Res., 42, W06D11,
doi:10.1029/2006WR004879.

Pekalski, A., and K. Sznajd‐Weron (Eds.) (1999), Anomalous Diffusion:
From Basics to Applications, Lect. Notes in Phys., vol. 519, Springer,
Berlin, doi:10.1007/BFb0106828.

Podlubny, I. (1999), Fractional Differential Equations, vol. 198, Academic,
San Diego, Calif.

Reneau, S. L., and W. E. Dietrich (1991), Erosion rates in the southern
Oregon Coast Range: Evidence for an equilibrium between hillslope
erosion and sediment yield, Earth Surf. Processes Landforms, 16,
307–322, doi:10.1002/esp.3290160405.

Roering, J. J. (2008), Howwell can hillslope evolutionmodels ‘explain’ topog-
raphy? Simulating soil production and transport using high‐resolution topo-
graphic data,Geol. Soc. Am. Bull., 120, 1248–1262, doi:10.1130/B26283.1.

Roering, J. J., and M. Gerber (2005), Fire and the evolution of steep, soil-
mantled landscapes, Geology, 33, 349–352, doi:10.1130/G21260.1.

Roering, J., J. Kirchner, and W. E. Dietrich (1999), Evidence for nonlinear,
diffusive sediment transport on hillslopes and implications for landscape
morphology, Water Resour. Res., 35(3), 853–870.

Schey, H. (1992), Div Grad Curl and All That: An Informal Text on Vector
Calculus, 2nd ed., W. W. Norton, New York.

Schumer, R., D. Benson, M. Meerschaert, and S. Wheatcraft (2001), Euler-
ian derivation of the fractional advection‐dispersion equation, J. Contam.
Hydrol., 48, 69–88, doi:10.1016/S0169-7722(00)00170-4.

Schumer, R., M. M. Meerschaert, and B. Baeumer (2009), Fractional
advection‐dispersion equations for modeling transport at the Earth sur-
face, J. Geophys. Res., 114, F00A07, doi:10.1029/2008JF001246.

Shlesinger, M. F., G. M. Zaslavsky, and U. Frisch (Eds.) (1995), Lévy
Flights and Related Topics in Physics, Lect. Notes in Phys., vol. 450,
Springer, Berlin, doi:10.1007/3-540-59222-9.

Stark, C. P., E. Foufoula‐Georgiou, and V. Ganti (2009), A nonlocal theory
of sediment buffering and bedrock channel evolution, J. Geophys. Res.,
114, F01029, doi:10.1029/2008JF000981.

Su, N. (1995), Development of the Fokker‐Planck equation and its solu-
tions for modeling transport of conservative and reactive solutes in phys-
ically heterogeneous media, Water Resour. Res., 31(12), 3025–3032,
doi:10.1029/95WR02765.

Tucker, G. E., and D. N. Bradley (2010), Trouble with diffusion: Reasses-
sing hillslope erosion laws with a particle‐based model, J. Geophys. Res.,
115, F00A10, doi:10.1029/2009JF001264.

Voller, V., and C. Paola (2010), Can anomalous diffusion describe deposi-
tional fluvial profiles?, J. Geophys. Res., 115, F00A13, doi:10.1029/
2009JF001278.

Washburn, A. L. (1973), Periglacial Processes and Environments, 320 pp.,
Edward Arnold, London.

Woyczynski, W. (1998), Burgers‐KPZ Turbulence: Gottingen Lectures,
Lect. Notes in Math., vol. 1700, Springer, Berlin.

Yoo, K., R. Amundson, A. M. Heimsath, and W. E. Dietrich (2005), Pro-
cess‐based model linking pocket gopher (Thomomys bottae) activity to
sediment transport and soil thickness, Geology, 33, 917–920,
doi:10.1130/G21831.1.

Yoo, K., R. Amundson, A. M. Heimsath, and W. E. Dietrich (2006), Spa-
tial patterns of soil organic carbon on hillslopes: Integrating geomorphic
processes and the biological C cycle, Geoderma, 130, 47–65,
doi:10.1016/j.geoderma.2005.01.008.

W. E. Dietrich, Department of Earth and Planetary Science, University of
California, Berkeley, CA 94720, USA. (efi@umn.edu)
E. Foufoula‐Georgiou and V. Ganti, Saint Anthony Falls Laboratory and

National Center for Earth‐surface Dynamics, Department of Civil
Engineering, University of Minnesota, 2 Third Ave. SE, Minneapolis,
MN 55414, USA.

FOUFOULA‐GEORGIOU ET AL.: NONLOCAL THEORY OF SEDIMENT TRANSPORT F00A16F00A16

12 of 12



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


