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[1] Hillslope sediment transport models express the sediment flux at a point as a
function of some topographic attributes of the system, such as slope, curvature, soil
thickness, etc., at that point only (referred here as “local” transport models) or at an
appropriately defined vicinity of that point (referred here as “nonlocal” transport
models). Typically, topographic attributes are computed from digital elevation data
(DEMs) and thus their estimates depend on the DEM resolution (1 m, 10 m, 90 m, etc.)
rendering any sediment flux computation scale-dependent. Often calibration
compensates for this scale-dependence resulting in effective parameterizations with
limited physical meaning. In this paper, we demonstrate the scale-dependence of local
nonlinear hillslope sediment flux models and derive a subgrid scale closure via
upscaling. We parameterize the subgrid scale closure in terms of the low resolution,
resolved topographic attributes of the landscape, thus allowing the reliable computation
of a scale-independent sediment flux from low resolution digital elevation data. We also
show that the accuracy of the derived subgrid scale closure model depends on the
dimensionless erosion rate and the dimensionless relief of any given basin. Finally, we
present theoretical arguments and demonstrate that the recently proposed nonlocal
sediment flux models are scale-independent. These concepts are demonstrated via an
application on a small basin (MR1) of the central Oregon Coast Range using high-resolution
lidar topographic data.

Citation: Ganti, V., P. Passalacqua, and E. Foufoula-Georgiou (2012), A sub-grid scale closure for nonlinear hillslope sediment
transport models, J. Geophys. Res., 117, F02012, doi:10.1029/2011JF002181.

1. Introduction

[2] The generation and movement of sediment on hill-
slopes has been the subject of continuous theoretical and
field work since the pioneering conceptualizations of Gilbert
[1877, 1909] and the mathematical formalisms introduced
later by Culling [1960, 1963, 1965]. Culling [1963] pro-
posed that the magnitude of the average rate of downslope
sediment flux depends linearly on the magnitude of the local
gradient:

qs;L ¼ KL rzj j ð1Þ

where qs,L is the volumetric sediment transport rate per unit
contour length, z is local hillslope elevation, |rz| is the
magnitude of the local hillslope gradient, and KL is the
proportionality constant (a diffusion-like coefficient) which
depends on climate and material. The value of KL has been

estimated from a variety of approaches including field and
experimental tests (e.g., see Martin and Church [1997] and
Fernandes and Dietrich [1997] for reviews) and process-
specific derived models [e.g., Kirkby, 1971; Gabet, 2000;
Furbish et al., 2007]. Excellent reviews and further refer-
ences are provided by Dietrich et al. [2003] and Tucker and
Hancock [2010].
[3] The linear slope-dependent sediment transport model

of equation (1) has been found inadequate to explain the
observed sediment flux on steep slopes (slopes in excess of
20%) and nonlinear sediment transport models have been
proposed [e.g., Scheidegger, 1961; DePloey and Savat,
1968; Kirkby, 1984; Andrews and Hanks, 1985; Pierce and
Colman, 1986; Andrews and Bucknam, 1987; Anderson
and Humphrey, 1990; Anderson, 1994; Howard, 1994;
Roering et al., 1999; Gabet, 2000]. A nonlinear sediment
transport model widely used is of the form:

qs ¼ K rzj j
1� rzj j=Scð Þ2 ð2Þ

where qs is the magnitude of the nonlinear sediment flux,
K is a diffusivity, and Sc is the so-called critical gradient.
The above equation has been derived from different
assumptions and theories and has been verified by field
and experimental studies [Andrews and Bucknam, 1987;
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Roering et al., 1999, 2001; Roering, 2008]. From equation (2)
one observes that at small gradients, the nonlinear flux model
imitates linear diffusive transport. However, as local gra-
dients approach a critical threshold gradient (Sc), the non-
linear flux model depicts an accelerated diffusion on
hillslopes and the magnitude of the nonlinear sediment flux
approaches infinity. The diffusivity and the critical gradient
(K and Sc) are calibrated parameters [e.g., Roering et al.,
1999; Heimsath et al., 2001]. Both equations (1) and (2)
use the magnitude of the local gradient at every pixel to
compute the sediment flux at that location. We will call both
these transport models as “local”, linear and nonlinear,
respectively. The local sediment transport models inherently
assume the existence of a representative elementary volume
(that incorporates the heterogeneities of the landscape) where
the model can be applied.
[4] Recently, a new approach has emerged motivated by

the observation that the scales of transport or particle dis-
placement on hillslopes span a wide range as a result of very
heterogeneous disturbance processes (such as gopher
mounds, rain splash, wood blockage, tree throw, etc)
[Foufoula-Georgiou et al., 2010; Furbish and Haff, 2010].
Thus, there is no separation between the scales of transport
and the scale of the system itself, putting in question the
standard local gradient theory formulations (e.g., see review
by Foufoula-Georgiou and Passalacqua [2012]). Nonlocal
theories of sediment transport on hillslopes have been pro-
posed using discrete particle-based models [Tucker and
Bradley, 2010] or a fractional diffusion continuum formula-
tion [Foufoula-Georgiou et al., 2010]. The continuum non-
local model takes the general form:

q⋆s xð Þ ¼ K⋆
Z x

0
g lð Þ

���� ∂z x� lð Þ
∂x

����dl ð3Þ

where qs
⋆ is the magnitude of the nonlocal flux, K⋆ is the

measure of the diffusivity, g(l) is a weighting function which
takes into account the upslope history of the system, and x is
the distance from the ridgetop along the hillslope flow path.
When the weighting function takes a power law form,
g(l) � l1�a where 1 < a ≤ 2, then the above equation
can be cast into a fractional diffusive flux model for sedi-
ment transport on hillslopes [Foufoula-Georgiou et al.,
2010]. The nonlocal transport models are inherently scale-
free and do not assume the existence of a representative
elementary volume.
[5] It has been discussed in the literature that the compu-

tation of local gradients and many of the geomorphic and
hydrologic quantities (e.g., width function, channel initiation
threshold, topographic index, etc.) of a catchment are
strongly dependent on the resolution of the digital elevation
models (DEMs) used [e.g., Montgomery and Foufoula-
Georgiou, 1993; Zhang and Montgomery, 1994; Walker
and Willgoose, 1999; Zhang et al., 1999; Evans and
Willgoose, 2000; Stark and Stark, 2001; Zhang et al.,
2002; Dietrich et al., 2003; Boardman, 2006; Passalacqua
et al., 2006; Sorensen and Seibert, 2007; Foufoula-
Georgiou et al., 2008] and even on the gridding methods
used in building the DEM [e.g., Hancock, 2005, 2006].
Hence, any local sediment transport model (linear or non-
linear) that is a function of the local gradients will be scale-
dependent. For example, using 90 m or 30 m DEMs will

result in different local gradients than those computed
from a 1 m DEM. How then is the scale-dependence of
gradients to be handled in computing the sediment flux
from equations (1) or (2)? One can argue that this can be
handled by appropriate calibration of the flux equation to
local data to yield an effective (scale-dependent) parameter
K [Anderson, 1994]. This is unsatisfying in the long-run as
this parameter loses its physical meaning. At the same
time both equations (1) and (2) physically apply at some
scale that is assumed to be the representative elementary
control volume for the application of the local sediment
transport models (e.g., determined to be the scale which
averages over biotic processes [Roering et al., 2010]). For
example equation (2) has been derived from ballistic par-
ticle transport considerations [Andrews and Bucknam,
1987] or from the balance of frictional and gravitational
forces at a scale below which topography is dominated by
biotic processes [Roering et al., 1999, 2010]. Thus, in
principle if equations (1) and (2) were to be applied at
length scales greater than the scale of the pre-defined
representative elementary volume, new mean field equa-
tions would need to be derived via upscaling. These mean
field equations would not only involve the same model
formulation evaluated at the larger scale, but would also
involve additional terms which take into account the var-
iability that lies within the scale of application. The addi-
tional terms are called the subgrid scale closure terms as
they account for the subgrid variability of the landscape
and need to be taken into account while applying flux
models at larger scales. In simple words, applying flux
models at a larger scale would not simply involve keeping
the model equation intact and tuning the parameter K, but
it would instead involve the addition of a closure term to
incorporate the variability of gradients within the scale of
averaging.
[6] The scope of this paper is to put forward in a formal

way the scale-dependence of the local, nonlinear sediment
flux models (section 2), and to derive the closure term for the
nonlinear sediment flux model of equation (2) (section 3).
The parameterization and the applicability of the proposed
subgrid scale closure model are discussed in sections 4 and 5,
respectively. Finally, we present a preliminary analysis that
points in the direction that the nonlocal transport model of
equation (3) can be scale-independent (section 6). To dem-
onstrate the above concepts we use 2 m lidar topography
of a small basin within the Oregon Coast Range. Conclu-
sions and recommendations for further work are given in
section 7.

2. Scale-Dependence of Local Nonlinear
Transport Models

[7] In this section we demonstrate via an example the
scale-dependence of the magnitudes of local gradients and
the computed sediment flux using DEMs at different reso-
lutions. We used lidar data from a small watershed (MR1)
within the Oregon Coast Range, near Coos Bay, Oregon,
collected at a resolution of approximately 2 m (see Figure 1).
Details about this site are discussed by Roering et al. [1999].
[8] Computation of local gradients and curvatures at dif-

ferent scales requires a “smoothing” and a corresponding
“differencing” filtering of the landscapes. The simplest
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smoothing filter is the arithmetic averaging in which local
gradients and curvatures are the first and second order dif-
ferences of the smoothed landscape at the corresponding
scale. A much more efficient way of implementing both the
smoothing and differencing filtering in a single operation is
the wavelet-based methodology proposed by Lashermes et
al. [2007]. A nonlinear filtering framework for smoothing
landscapes that enhances the geomorphic features present in
the landscape was proposed by Passalacqua et al. [2010a]
(comparison of the performance of the nonlinear filtering
framework and the wavelet-based methodology was shown
by Passalacqua et al. [2010b]). To be consistent with the
upscaling framework used here to derive the subgrid scale
closure (section 3), a simple moving averaging of the land-
scape in boxes of size D � D m2 has been used as the
smoothing filter and first and second order differencing
operations have been performed to compute the local gra-
dients and curvatures at that scale D. The results reported
here are not sensitive to the choice of the smoothing and
differencing filter and similar results were obtained using the
wavelet-based methodology.
[9] To evaluate the sediment flux qs from the hillslope

pixels of the study site, one needs to first remove the pixels
corresponding to the fluvial or channelized parts of the
landscape. For this purpose we use the methodology pro-
posed by Lashermes et al. [2007] that is based on the cur-
vature quantile-quantile plot, where any pixel with curvature
above a critical threshold value (equal to the curvature value
corresponding to the standard normal deviate of 1), which
inherently emerges from this quantile plot, corresponds to
channelized parts of the landscape (as discussed by
Passalacqua et al. [2010a] these pixels correspond to the
pixels around the centerline of the channels). Figure 2b
displays the quantile-quantile plot of the curvatures and

determines the threshold value of 0.1 as the one that
delineates hillslope pixels from valleys and channels.
Excluding all the pixels for which r 2z > 0.1 yields the
pixels of the study site over which the nonlinear hillslope
sediment flux model of equation (2) was applied (see
Figure 2c). The model parameters used for the computation
of the nonlinear sediment flux from the MR1 basin were
K = 0.0032 m2/yr and Sc = 1.25 [see Roering et al., 1999,
Table 1] for calibrated values of the parameters for the
Oregon Coast Range). The scales over which the above
computations were performed ranged from 2 m (resolution
of the data) to 30 m (which is the measure of the length scale
of hillslopes obtained from the wavelength corresponding to
the scaling break in the power spectral density of lateral
elevation transects, taken perpendicular to the trunk stream,
of the MR1 basin shown in Figure 2d). For scales larger
than 30 m, valley-forming processes dominate the landscape
requiring a different transport model.
[10] For the hillslope pixels of the MR1 basin, Figure 3a

shows the probability density function (pdf) of the magni-
tude of the local gradients at different scalesD. It is observed
that the pdfs change with scale not only in shape but also in
terms of the mean value rz

�� ��. Figure 3b shows the numeri-
cally evaluated pdf of qs, f(qs), using equation (2) on the
hillslope pixels of MR1 and for scalesD = 2, 10 and 30 m. To
gain more insight into how the pdf of slopes projects via the
nonlinear relationship (2) into the pdf of sediment fluxes qs
we show in Figure 4 a detailed example of the numerical
evaluation for D = 2 m. It is observed from Figure 4 that the
nonlinear shape of the qs vs |rz| relationship changes the
shape of the pdf of |rz| to a more skewed pdf for qs (since
high values of |rz| produce disproportionately large amount
of sediment flux). This change of shape of the pdf via the
transformation of |rz| to qs implies that plugging the average

Figure 1. High resolution topographic data of a 2.8 km2 area in the Oregon Coast Range near Coos Bay,
Oregon. The MR1 basin used in this study to demonstrate the scale-dependence of nonlinear hillslope flux
model is indicated. The resolution of the data is approximately 2 m.
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local gradient value into equation (2) at a given scale will not
result in a good approximation for the average sediment flux
at that scale (in fact, it severely underestimates the average
sediment flux). This is because the nonlinear relationship in
equation (2) implies that N xð Þ ≠ N �xð Þ (where N(⋅) is some
nonlinear function of x), that is:

qs ¼ K rzj j
1� rzj j=Scð Þ2 ≠

K rz
�� ��

1� rz
�� ��=Sc� �2 ð4Þ

where the overbar indicates the expected value of the quantity.
To get a better approximation of the average flux qs at scaleD

one needs to consider not only the mean value of the local
gradients within a box of sizeD � D but also their variability.
On the contrary, the average flux qs;L for the linear local rela-
tionship (1) can be exactly computed by evaluating equation (1)
at the box-average slope. This is because for linear relation-
ships: L xð Þ ¼ L �xð Þ. In the next section, we derive the subgrid
scale closure for the nonlinear flux model of equation (2).

3. Derivation of Closure for the Local Nonlinear
Transport Model

[11] The motivation for deriving the subgrid scale flux for
the nonlinear transport model of equation (2) is two-fold.

Figure 2. (a) Curvature map of the MR1 basin with the 2 m contour lines overlaid. (b) Quantile-quantile
plot of the Laplacian curvatures in the MR1 basin. The deviation of the positive curvature from normality
(a straight line in this plot) can be used to identify the channelized pixels as shown by Lashermes et al.
[2007]. The threshold on curvature for delineating the channelized pixels was found to be ≃0.1. (c)
Extracted likely channelized pixels of the MR1 basin (marked in red) using the curvature threshold of
0.1. The computation of the nonlinear hillslope sediment flux was performed on all the pixels of the
MR1 basin except for the ones marked in red. (d) Power spectral density of the lateral elevation transects
(taken perpendicular to the trunk stream every 2 m) of the MR1 basin. The change in the scaling regime of
the power spectral density marks the length scale of hillslopes here considered approximately 30 m as
shown with the vertical broken line. The inset plot shows an example elevation transect of the MR1 basin.
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First, DEMs at the resolution of 1 m or 2 m are often
unavailable thus forcing the application of the flux models at
larger scales. Secondly, even when the high-resolution
DEMs are available, the local gradients are computed at
scales larger than 1 m to ensure robustness, remove noise,
and to average over some stochastic processes such as biotic
processes, frost action, etc., that shape the hillslope. Thus,
the chosen scale for this computation often introduces
unforeseen scale-dependent effects in the computation of
sediment flux.
[12] Consider the nonlinear sediment flux model of

equation (2). For simplicity of notation, let us denote by S
the absolute value of slopes |rz| at the smallest scale, i.e.,
the scale for which the model of equation (2) is theoreti-
cally derived. One can write the nonlinear flux model of
equation (2) using Taylor series expansion as:

qs ¼ KS 1þ S

Sc

� �2

þ S

Sc

� �4

þ ⋯

 !
ð5Þ

Since the local slopes are smaller than the critical gradient
Sc, the ratio of S to Sc is always less than one and we can
neglect the fourth and higher order terms in the series
expansion as the contribution to the sediment flux from
those terms is negligible (see section 5 for a discussion of
the effect of Taylor series approximation on the computed
sediment flux). This simplification yields a simple polyno-
mial relation of sediment flux which involves the first and
the third powers of the local slope given by:

qs ≃ KS þ K

S2c
S3 ð6Þ

The computed sediment flux using equation (6) from all the
hillslope pixels of the MR1 basin shows a strong depen-
dence on scale, as seen from Figure 5 (open circles). The
parameters of the nonlinear model used for the computation
were K = 0.0032 m2/yr and Sc = 1.25 [Roering et al., 1999].
Starting with equation (6), which applies at some pre-
defined scale of the representative elementary volume, we
derive the subgrid scale closure, i.e., the term that needs to
be added to this equation to account for the variability of
local slopes within a box of size D � D. We approach this
derivation from two different viewpoints: (1) a physical
consideration of upscaling the flux to derive a new mean
field equation at larger scales, and (2) a statistical viewpoint
where upscaling is considered as taking an expectation of
the probability distributions of slopes at a given scale.

Figure 4. Using the nonlinear flux model of equation (2),
we evaluate how the probability distribution of local
slopes |rz| projects into a (derived) probability distribution
of sediment flux qs. We note that the nonlinearity of the
functional relationship between |rz| and qs implies that
qs rzj jð Þ ≠ qs rz

�� ��� �
. That is, computing the flux in a box

of size D � D using the box-average gradient in the nonlin-
ear flux model, qs rz

�� ��� �
, is not the same as the arithmetic

average of the sub-pixel fluxes qs rzj jð Þ . This is due to the
nonlinear relationship and the variability of gradients within
the box of size D � D. The values of the parameters used
here are K = 0.0032 m2/yr and Sc = 1.25 as reported by
Roering et al. [1999].

Figure 3. Change of probability density functions of (a) the
magnitude of local gradients and (b) the magnitude of the
nonlinear sediment flux (equation (2)) with scale D com-
puted at the hillslope pixels in the MR1 basin (see Figure 4
for further discussion).
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3.1. Subgrid Scale Closure: Physical Viewpoint

[13] Let us denote the upscaled flux at a given scale D aseqsD. This flux can be computed by a filtering or upscaling of
the right hand side of equation (6) as:

eqsD ≃ KS þ K

S2c
S3
e ð7Þ

At every pixel of the landscape, the magnitude of the
gradient, S, can be decomposed into its filtered component
at scale D, eSD , and its fluctuation around the filtered com-
ponent, SD′ , i.e., S ¼ eSD þ SD′ . This operation is akin to the
Reynolds decomposition or the Large Eddy Simulation
approach used extensively in modeling turbulence [e.g.,
Germano et al., 1991;Moin et al., 1991;Meneveau and Katz,
2000; Pope, 2000; Porté-Agel et al., 2000; Sagaut, 2002;
Geurts, 2004; Pope, 2004; Porté-Agel, 2004; Passalacqua
et al., 2006].

[14] Replacing in equation (7) the local slopes, S, by the
sum of their filtered components, eSD, and their fluctuations,
SD′ , and expanding the right hand side results in:

eqsD≃ KeSD þ K

S2c
eSD� �3

þ fS′D3 þ 3eSDfS′D2 þ 3fS′D eSD� �2� �
ð8Þ

Noting that fS′D ¼ 0 at any scale D (i.e., the average of the
fluctuations around the mean is zero), the above equation
after rearrangement simplifies to:

eqsD ≃ KeSD þ K

S2c
eSD� �3

þ K

S2c
3eSDfS′D2 þ fS′D3� �

ð9Þ

By comparing equation (6) with the filtered equation (9), it is
observed that they have the same form except for the addi-
tional term in the right hand side of equation (9). This term is
the so-called subgrid scale closure which needs to be added
to the flux model of equation (6) if one uses the filtered
slope, eSD , instead of the local slope S in equation (7) to

guarantee scale-independence. The terms fS′D2 and fS′D3 in the
closure represent the second and the third central moments
of the slope fluctuations at the given scale D. Depending on
the statistical nature of the landscape, the contributions of

the second-order term (which contains fS′D2 ) and the third-

order term (which contains fS′D3 ) will vary. Our goal is to
demonstrate the effect that the variability of the slope fluc-
tuations has on the computed sediment flux at different
scales. Thus, we neglect the third order moment in the clo-
sure term and approximate the subgrid scale closure term as:

ssg Dð Þ≃ 3K

S2c
eSDVar S′D

� � ð10Þ

where ssg(D) denotes the subgrid scale flux at a scaleD, and

Var S′D
� � ¼ fS′D2 denotes the variance of slope fluctuations

within a box of size D � D. From a geometrical point of
view, smoothing the landscape is equivalent to piecewise
linearization of the landscape in boxes of size D � D m2

(i.e., fitting a plane to the landscape in boxes of sizeD�D).
The normalized slope fluctuations SD′ are a measure of the
local curvature of the landscape. Thus, the derived subgrid
scale closure, which is dependent on the slope fluctuations at
that scale, SD′ , accounts for the deviation from the lineari-
zation approximation of smoothing (or the deviation of the
landscape shape from the fitted plane in boxes of size
D � D). The nature of the subgrid scale flux and its
parameterization are discussed in section 4. In the next sub-
section 3.2 we derive the subgrid scale flux from a statistical
viewpoint.

3.2. Subgrid Scale Closure: Statistical Viewpoint

[15] Since the upscaling filter using arithmetic averaging
is a linear operator, equation (7) can be broken down as:

eqsD ≃ KeSD þ K

S2c
fS3D ð11Þ

Figure 5. Plot showing the percentage of the total sediment
flux computed from the hillslope pixels of MR1 basin that is
retrieved at scales larger than D = 2 m when compared with
the flux computed at scale D = 2 m (eqsD=qs). The open cir-
cles denote the sediment flux computed using the nonlinear
flux model of equation (6) and the solid circles denote the
sediment flux computed using the nonlinear flux model with
the proposed second-order closure (equation (10)). The
black solid circles indicate the subgrid scale closure term
added locally for each box D � D across the landscape.
The solid red circles indicate the flux calculated using the
subgrid scale closure parameterized using the global statis-
tics of slope fluctuations across the basin. The shaded area
denotes the standard error (evaluated from equation (10) by
replacing Var(SD′ ) with std(Var(SlD′ ))) in the estimate of
the nonlinear flux with the global subgrid scale closure
parameterization. The values of the parameters used were
K = 0.0032 m2/yr and Sc = 1.25 (same as the values cali-
brated by Roering et al. [1999]).
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i.e., the sum of a linear and a nonlinear term: qs = L(S) + N(S).
The nonlinear term involves the filtering of the third power of
Swhich is not the same as the third power of the filtered term,

i.e.,fS3D ≠ fSD� �3
. The nonlinear termfS3D in the right hand side

of equation (11) can be written in terms of the slopes at the
resolved scale eSD using the Taylor expansion which is given
by:

gN Sð Þ ¼ N eSD� �
þ
N″ eSD� �

2
Var S′D
� �þ…

¼ K

S2c
eSD� �3

þ 3K

S2c
eSDVar S′D

� �þ… ð12Þ

Neglecting the higher order terms in equation (12) and
substituting it in equation (11) the subgrid scale closure,

which is given by ssg ¼ gN Sð Þ � N eS� �, is the same as that

in section 3.1 (equation (10)).

4. Parameterization of the Subgrid Scale Flux

[16] The subgrid scale flux (equation (10)) is dependent on
the filtered components of the slopes at the given scale D,eSD, the variance of the slope fluctuations SD′ within boxes of
scale D, Var(SD′ ), and the parameters of the nonlinear flux
model, namely, K and Sc. The filtered components of the
slopes, eSD , were computed through a simple moving aver-
aging filter (as detailed in section 2) and the slope fluctua-
tions were then determined by taking the differences of the
filtered slopes and the slopes computed at the finest resolu-
tion of the landscape. By performing this computation over a
range of scales D, we gained access to the variance of the
slope fluctuations and how this variance changes across the
landscape. For a given scale D, the subgrid scale variance
Var(SD′ ) depends on the location of the box of size D � D

within the landscape. When high-resolution data are avail-
able, say at a scale of 1 m or 2 m, then the subgrid scale
closure term can be computed locally for each box of size
D � D m2 by estimating the variance of slope fluctuations
within each box (Var(SD′ )). The resulting subgrid scale clo-
sure, which corrects for the subgrid scale variability of
slopes specific to each D � D box, is referred to here as the
local subgrid scale closure. Figure 5 (solid black circles)
shows the sediment flux computed using the nonlinear flux
model of equation (6) with the proposed locally computed
subgrid scale closure. Figure 5 demonstrates that the pro-
posed subgrid scale term alleviates the scale-dependence that
the nonlinear flux model suffers from (see open circles in
Figure 5). The largest scale to which the computations were
performed is equal to the scale of the hillslope, D = 30 m
(see Figure 2d), as beyond this scale the landscape is shaped
by valley-forming processes.
[17] The variance of the slope fluctuations, Var(SD′ ),

within boxes of sizeD�D needed in equation (10) requires
data at scales smaller than D. In the absence of data at res-
olution higher thanD, this quantity is unknown and we need
to parameterize it in terms of the resolved quantities of the
topographic data at scales larger than D (say 2D). This can
be achieved by investigating the relationship between the
variance of slope fluctuations within a given scale and the
scale D. This parameterization can be done locally (for each
pixel of the landscape) or globally for the whole landscape.
In global parameterization we use the spatially averaged
variance of slope fluctuations over the whole landscape
(〈Var(SD′ )〉) as a first-order estimate of Var(SD′ ) for each
pixel at the given scaleD. The standard error of this estimate
for each pixel is quantified by the standard deviation of the
variance of slope fluctuations, which quantifies the pixel-to-
pixel variability of Var(SD′ ) across the landscape. Figure 6
shows the functional dependence of these two quantities
(〈Var(SD′ )〉 and std(Var(SD′ ))) on scale for the hillslope
pixels of the MR1 basin. A power law relationship was found
to provide a very good approximation of the functional
dependence of the first two central moments of Var(SD′ ) on
scale, given by:

Var S′D
� �	 
 � Db ð13aÞ

std Var S′D
� �� � � Dg ð13bÞ

where 〈⋅〉 denotes the expectation operator and std(⋅) denotes
the standard deviation of the quantity in the parenthesis. This
functional dependence provides us with a means of parame-
terizing the subgrid scale flux in terms of the known quanti-
ties of the landscape. For instance, if one were attempting to
compute the sediment flux from the nonlinear flux model at a
scale D, an averaging (or filtering) operation would need to
be performed on the DEM to compute the slopes at some
larger scale lD (l > 1). Then the power law form that has
been established in Figure 6 can be invoked to estimate the
exponents, b and g, using:

Var S′lD
� �	 


Var S′D
� �	 
 ¼ lb ð14aÞ

std Var S′lD
� �� �

std Var S′D
� �� � ¼ lg ð14bÞ

Figure 6. Plot showing the functional dependence of the
mean and standard deviation of the variability of slope fluc-
tuations, SD′ , on scale D in the MR1 basin. The power law
dependence on scale of the first two moments of the variance
of slope fluctuations within the given scale, (Var(SD′ )),
allows one to parameterize the subgrid scale closure of
equation (10).
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Once the power law exponents are estimated, the mean and
standard deviation of the variance of slope fluctuations at the
scale of interest can be extrapolated by using the computed
mean and standard deviation of Var(SlD′ ). This operation
provides a “global” correction for the computed sediment
flux over the whole landscape and thus this subgrid scale
term computed using global statistics is referred to here as the
“global subgrid scale closure.” This can be viewed as
informing the flux model with the information about the
landscape statistics at higher scales to downscale the vari-
ability to an unknown smaller scale. This is a common
approach to subgrid scale parameterization in large-eddy
simulation [e.g., Porté-Agel et al., 2000] as well as in pre-
cipitation [e.g., Harris and Foufoula-Georgiou, 2001] and
soil moisture [e.g., Nykanen and Foufoula-Georgiou, 2001]
applications. Practically, the implication of this result is that
if one were to have DEM data that is too coarse to get rea-
sonable estimates of the sediment flux (e.g., ASTER or
SRTM data), then one can quantify the subgrid scale variance
of the slope fluctuations within a given scale using the power
law relationships shown in Figure 6 and arrive at a reasonable
estimate of the sediment flux by applying the subgrid scale
closure correction at each pixel of the landscape.
[18] Figure 5 (solid red circles) shows the computed non-

linear sediment flux with the proposed global subgrid scale
correction from all the hillslope pixels of the MR1 basin
(using the global average 〈Var(SD′ )〉 value instead of the
box-specific values of Var(SD′ ) in equation (10)). The model
parameters used were K = 0.0032 m2/yr and Sc = 1.25. As
seen in Figure 5, the global subgrid-scale correction per-
forms only slightly worse than the local correction model
even for scales larger than 20 m. In order to explicitly
account for the uncertainty introduced by substituting the
local variance of slope fluctuations by their spatially average
value, the standard error of estimate was also computed
(using the standard deviation of the variance of slope fluc-
tuations available at any scale D and the power law rela-
tionship established in Figure 6). This standard error of
estimate is shown as the shaded area in Figure 5.

5. Applicability of the Subgrid Scale
Closure Model

[19] As shown in section 4, the proposed subgrid scale
closure model of equation (10), when applied to the MR1
sub basin of the Oregon Coast Range, alleviates much of the
scale-dependence that the nonlinear hillslope sediment
transport model suffers from. The natural question that arises
then is: how general is this result and what attributes of a
given landscape control the performance of the proposed
subgrid scale closure model? Critical to the derivation of the
subgrid scale closure is the Taylor series approximation of
equation (2) and its truncation (neglecting the higher order
terms in equation (5)). The Taylor series expansion of
equation (5) does not capture the steep nonlinearity of the
functional form of the nonlinear sediment flux model as the
average slope of a hillslope approaches the critical value of
Sc (S=Sc → 1 ) and, therefore, for such values of slopes
equation (5) becomes an increasingly less accurate approx-
imation of equation (2) . Thus, this polynomial approxima-
tion of the nonlinear sediment transport model would have a
direct effect on the performance of the proposed subgrid

scale closure model. In this section, we will explore the
applicability of the proposed subgrid scale closure model to
real landscapes and highlight the primary physical controls
on the accuracy of the proposed model.
[20] Morphologic characteristics of hillslopes (e.g., average

slope, hillslope relief) are known to depend on the interplay
between tectonic forcings and the climate-dependent ero-
sional processes, and several studies have quantified the
dependence of different measures of topographic inclination
on denudation rates [see Roering et al., 2007, and references
therein]. To study the linkage between the hillslope mor-
phology and denudation, one can combine the nonlinear
sediment flux model with the one-dimensional, continuity
equation given by:

rs
∂z
∂t

¼ �rs
∂qs
∂x

þ rrU ð15Þ

where qs is the nonlinear sediment flux, U is the rock uplift
rate, t is time, x is the horizontal hillslope distance, and rr
and rs are densities of rock and soil, respectively. Under the
assumption of steady state denudation ∂z/∂t → 0 (where the
rate of bedrock erosion, E, is equal to the rate of rock uplift,
U), Roering et al. [2007] derived the one-dimensional,
functional forms of the magnitude of local gradient (S = |∂z/
∂x|) and hillslope elevation profiles predicted by the non-
linear sediment flux model in terms of the transport para-
meters (K and Sc), erosion rate (E), and material properties
(rr and rs). Further, they showed that in dimensionless form,
the magnitudes of local gradients (S∗) and the hillslope relief
(R∗) can be expressed as [Roering et al., 2007]:

S∗ ¼ S

Sc
¼ 1

E∗x∗ð Þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E∗x∗ð Þ2

q� �
ð16aÞ

R∗ ¼ S

Sc
¼ 1

E∗ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E∗ð Þ2

q
� ln

1

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E∗ð Þ2

q� �� �
� 1

� �
ð16bÞ

where E∗ and x∗ are independent dimensionless variables,
and S is the average slope of the hillslope. The expressions
for the dimensionless hillslope distance and dimensionless
erosion rate were given by:

x∗ ¼ x

LH
ð17aÞ

E∗ ¼ E

ER
ð17bÞ

where LH is the hillslope length (measured horizontally from
the hilltop to the channel margin) and ER is a reference
erosion rate given by ER = KSc/(2LH(rr/rs)). As seen from
the above equations, the average slope and dimensionless
hillslope relief of a hillslope are primarily controlled by the
dimensionless erosion rate, E∗.
[21] To quantify the accuracy of the Taylor series approx-

imation of the nonlinear hillslope sediment flux model, we
evaluated the steady state magnitudes of the local gradients
predicted by the nonlinear sediment flux model for various
values of the dimensionless erosion rates. We then computed
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the total sediment flux from the hillslope profiles (whose
magnitudes of local gradients are given by equation (16a))
using equations (2) and (6). The accuracy of the Taylor series
approximation of the nonlinear sediment flux model can then
be defined as the ratio of the total flux from the hillslope
profile computed using equation (6) to the total sediment flux
computed using equation (2). Figure 7 shows the functional
dependence of the accuracy of the Taylor series approxima-
tion of the nonlinear sediment flux model as a function of the
dimensionless erosion rate. The functional dependence of the

dimensionless hillslope relief R∗ on the dimensionless ero-
sion rate E∗ is also shown in this plot. As seen in Figure 7, the
accuracy of the Taylor series approximation and thus the
proposed subgrid scale closure model reduces with an
increase in the dimensionless erosion rate. For values of
E∗ > 10, the decrease in the accuracy of the Taylor series
approximation of the nonlinear sediment flux is significant,
as the polynomial approximation of the nonlinear sediment
flux model does not capture the threshold behavior of the
nonlinear sediment flux model (i.e., the sediment flux does
not approach infinity, as the local slope approaches the crit-
ical value of Sc). This observation is a manifestation of the
fact that hillslope profiles become increasingly planar with
an increase in the dimensionless erosion rate and their
average slope approaches the critical threshold value
(S → Sc). Thus, the ratio of S to Sc approaches a value of 1
for higher values of E∗ (see Figure 7) and the Taylor series
approximation (given by equation (6)) does not adequately
describe the nonlinear sediment flux model of equation (2).
This result has a direct effect on the performance of the pro-
posed subgrid scale closure, as the derivation of the closure is
built upon the polynomial approximation of the nonlinear
sediment flux model of equation (2).
[22] The reported values of the dimensionless variables for

the Oregon Coast Range (of which MR1 is a sub basin) were
E∗ � 6.33 and R∗ � 0.64 [Roering et al., 2007] and thus,
from the theoretical relation in Figure 7, we note that the
Taylor series approximation provides an adequate represen-
tation of the nonlinear sediment flux model of equation (2)
for this basin. This results in the good performance of the
proposed subgrid scale closure model as shown in section 4.
We plotted the dimensionless erosion rates and the dimen-
sionless relief from the Oregon Coast Range, Gabilan Mesa
[see Roering et al., 2007, Table 1], and several catchments
of the San Gabriel mountains (calculated from Table 1 of
DiBiase et al. [2010]) in Figure 7. The dimensionless relief
for the catchments in San Gabriel mountains were computed
(equation (16a)) using the values of average slope (S) and the
magnitude of the critical gradient (Sc) and the dimensionless
erosion rates were computed (equation (17b)) using the
reported values of the erosion rates (E), K, Sc, LH, rr and rs
used by DiBiase et al. [2010, Table 1]. As seen in Figure 7,
the Oregon Coast Range, Gabilan Mesa and some catch-
ments of the San Gabriel Mountains have a low dimen-
sionless erosion rate (E∗ < 10), which enables one to apply
the proposed subgrid scale closure model to these field sites.
We conclude that both the dimensionless erosion rate and
the dimensionless hillslope relief are non-parametric mea-
sures of the accuracy of the proposed subgrid scale closure
and can be used to determine whether the proposed closure
provides an accurate representation of the subgrid scale
fluxes for a given landscape.

6. Scale-Independence of Nonlocal Flux Model

[23] In this section we put forth the hypothesis that the
nonlocal sediment transport model is scale-independent and
test this hypothesis using an example computation on a
hillslope profile of the MR1 basin. The nonlocal flux model
of equation (3) uses a linear combination of slopes along the
flow path on the hillslope. Unlike the nonlinear flux model
where the flux computation is performed at each pixel of the

Figure 7. Functional dependence of the accuracy of the
Taylor series approximation of the nonlinear sediment flux
model on the dimensionless erosion rate, E∗ (bottom panel).
The accuracy of Taylor series approximation is defined as
the ratio of the total sediment flux computed from the pre-
dicted steady state, equilibrium hillslope profile of the non-
linear sediment transport model using equation (6) to that
computed using equation (2). The top panel (broken line)
shows the theoretical relationship between the dimensionless
relief R∗ and the dimensionless erosion rate E∗ derived from
the nonlinear sediment flux model of equation (2). Data
points from the Oregon Coast Range, the Gabilan Mesa
and several catchments from the San Gabriel mountains (as
reported by Roering et al. [2007] and DiBiase et al.
[2010]) are also shown on this plot. The above plot can be
used to determine whether the proposed closure provides
an accurate representation of the subgrid scale fluxes for a
given landscape.
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landscape, the nonlocal flux model takes into account the
magnitude of local gradients of the upslope topography
along the flow path. As shown by Foufoula-Georgiou et al.
[2010], when the convolution kernel, g(l), in equation (3)
takes a power law form the nonlocal flux model can be
cast into a fractional derivative form, given by:

q⋆s xð Þ ¼ K⋆
���� ∂a�1z

∂xa�1

���� ð18Þ

where qs
⋆(x) is the magnitude of the nonlocal sediment flux,

K⋆ is a diffusion-like coefficient, ∂a�1/∂xa�1 denotes the
fractional derivative operator and x is the distance from the
ridgetop along the flow path. The fractional derivative can
be computed using the one-shift Grünwald expansion
[Meerschaert and Tadjeran, 2004]:

∂a�1z xð Þ
∂xa�1

≃
1

Dxa�1

XN
k¼0

gkz x� kDxþDxð Þ ð19Þ

where gk are the one-shift Grünwald weights, Dx is the
spatial grid size in the numerical evaluation, N is the number
of node points upslope of the given point and ∂ a�1/∂ xa�1 is
the fractional differentiation operator of order a � 1
(1 < a ≤ 2). The Grünwald weights are given as [Grünwald,
1867; Meerschaert and Tadjeran, 2004]:

gk ¼ G k � aþ 1ð Þ
G �aþ 1ð ÞG k þ 1ð Þ ð20Þ

where G (.) is the gamma function. It is readily observed
from equations (18) and (19) that computation of the non-
local flux, qs

⋆(x), at a location x involves not only the gra-
dient at that location but also gradients upslope of that
location.One can write the fractional derivative operator on
elevation in equation (18) as a fractional integration on the
slopes and thus the nonlocal flux model becomes:

q⋆s xð Þ ¼ K⋆I1�a
x Sð Þ ð21Þ

where Ix
1�a(⋅) is a fractional integration operation of order

1 � a [Oldham and Spanier, 1974]. Filtering the above
equation yields the following relation:fq⋆sD xð Þ ¼ K⋆I1�a

x Sð Þe ð22Þ
In the above equation, we are performing an averaging of the
fractional integral of the slopes, S, which can be decomposed
into the sum of their filtered components at a given scale, eSD,
and their fluctuations component, SD′ . Noting that the frac-
tional integration is a linear operator, the above equation
would amount to the sum of the fractional integral of the
filtered slope (eSD) and the fractional integral of the average of
the fluctuating component of the slopes (SD′ ). Noting that the
latter term is zero (fS′D ¼ 0), equation (22) can be written as:fq⋆sD xð Þ ¼ K⋆I1�a

x
eSD� �

ð23Þ

denoting that the filtered flux is equal to the value of the flux
calculated by plugging the value of the filtered slope in its
original functional form of equation (21). This result
demonstrates theoretically that the nonlocal sediment trans-
port model of equation (3) is scale-independent.
[24] We investigate the scale-independence of the nonlocal

transport model by computing the sediment flux on a hill-
slope profile of theMR1 basin at various scales. The hillslope
profile chosen was one from the MR1 basin (Figure 8a) that
was reported by Roering et al. [1999] and later shown by
Foufoula-Georgiou et al. [2010] to be consistent with the
steady state prediction from a nonlocal flux model. Figure 8b
shows the total computed sediment flux from this single
hillslope profile using both the nonlocal flux model
(equation (21)) and the nonlinear flux model (equation (2)).

Figure 8. (a) Hillslope profile in the MR1 basin of the
Coos Bay region. This profile was reported by Roering et
al. [1999] and later shown by Foufoula-Georgiou et al.
[2010] to be consistent with the fractional flux model with
the parameter of a = 1.3. (b) Flux computed at four different
scales along a single profile of the MR1 basin in the Coos
bay region. As seen above the nonlinear flux model suffers
from scale-dependence of the total flux computed from the
hillslope profile, whereas the nonlocal flux model shows
very little dependence on scale. The parameters used for
the nonlinear flux model were K = 0.0032 m2/yr and
Sc = 1.25. The diffusivity of the fractional flux model, K⋆

was calibrated such that the fluxes computed from nonlocal
and nonlinear flux models are equal at the smallest scale.
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The parameters of the nonlinear model used were
K = 0.0032 m2/yr and Sc = 1.25 and K⋆ was calibrated such
that the total computed sediment flux from the hillslope
profile was equal for both the models at the smallest scale
(2 m). The value of a = 1.3 was chosen, which was esti-
mated from the form of the hillslope profile shown by
Foufoula-Georgiou et al. [2010]. As shown in Figure 8b,
the scale-dependence of the nonlocal flux model is minimal
when compared with the nonlinear flux model. This dif-
ference, when added up over all the hillslope profiles of the
MR1 basin, amounts to considerable scale-dependence in
the case of the nonlinear flux model, whereas the negligible
scale-dependence of the nonlocal flux model promises to
alleviate the issue of scale-dependence when applied to the
whole of MR1 sub basin.
[25] The above demonstration was performed on a single

hillslope profile only rather than on the whole MR1 basin, as
done in section 4. This is because, to the best of our
knowledge, the numerical implementation of fractional
derivatives on a 2-D field along directed flow paths that
possess a tree-like structure is not known. Testing the scale-
independence of the nonlocal flux model on a 2-D elevation
field is the subject of future research.

7. Conclusions

[26] In this paper, theoretical analysis and high-resolution
lidar data were used to demonstrate the scale-dependence of
local nonlinear geomorphic transport models of sediment
transport on hillslopes. The following conclusions were drawn:
[27] 1. The magnitude of local gradients and consequently

the computed sediment flux from a local nonlinear sediment
transport model were shown to be strongly dependent on the
scale at which the gradients were computed. A simple
moving averaging method was used for the purpose of
smoothing the 2 m high-resolution lidar data of the MR1
basin in the Oregon Coast Range to create landscapes at
lower resolutions. Other smoothing filters have been tested
with little difference in the results.
[28] 2. A subgrid scale closure was derived via upscaling

of the nonlinear sediment flux model for sediment transport
on hillslopes. It is noted that the local nonlinear flux model
inherently suffers from scale-dependence owing to the scale-
dependent nature of the local gradients and the nonlinear
relationship of the sediment flux and local gradients.
[29] 3. The proposed subgrid scale closure that accounts

for the variability at scales smaller than the scale D at which
the model is applied was shown to depend on the model
parameters (diffusivity and critical gradient, K and Sc,
respectively), the filtered component of the local gradients
(eSD ), and the variance of the slope fluctuations within the
scale D (Var(SD′ )). The mean and standard deviation of the
within-box (of scale D) variability of the slope fluctuations
were shown to have a power law dependence on scale, thus
enabling one to effectively parameterize the unknown vari-
ability at a given scale by using statistical information of the
landscape from larger scales. It was shown that both the
local subgrid scale closure (each box of scale D has its own
correction derived from its immediate larger-scale neigh-
borhood) and the global subgrid scale closure (same closure
for all boxes based on the statistics of the whole landscape)

alleviate the scale-dependence that the nonlinear sediment
flux model suffers from.
[30] 4. The accuracy of the proposed subgrid scale model

was shown to be directly related to the dimensionless erosion
rate (E∗) and the dimensionless hillslope relief (R∗) of a
given landscape. It was shown that for large value of the
dimensionless erosion rate (E∗ > 10 and S → Sc ) the pro-
posed subgrid scale closure will not perform well as the
Taylor series approximation of the nonlinear sediment
transport model, on which the proposed subgrid scale closure
derivation relies, breaks down.
[31] 5. Finally, the recently proposed nonlocal flux model

for sediment transport on hillslopes [Foufoula-Georgiou et
al., 2010] was shown theoretically to be scale-independent
owing to its inherent scale-free nature and the fact that it
does not assume the existence of a representative elementary
control volume. It was demonstrated that the nonlocal flux
model shows negligible scale-dependence compared to the
nonlinear flux model, when applied to a single hillslope
profile of the MR1 basin of the Oregon Coast Range.
[32] The conceptual framework for deriving the subgrid

scale closure presented in this paper (section 3) is general and
can be applied to any nonlinear sediment transport model. The
most notable examples in geomorphic transport are the stream
power model for bedrock erosion (x � AmSn, where x is the
rate of bedrock erosion, A is the upstream drainage area and S
is the local slope) and the bed load sediment transport models
(qbl � ta, where qbl is the bed load sediment flux and t is the
instantaneous shear stress at the bed). The investigation and
derivation of the subgrid scale closure models for these non-
linear sediment transport models is a subject of future study.
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