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Abstract

Landscapes are shaped by the interplay between tectonics and climate. The mass fluxes

associated with the physical and chemical processes acting across the landscape involve

the production and transport of sediment and solutes from the uplands to the lowlands.

The processes operating on the Earth’s surface dictate the selective long-term preser-

vation of the history of these processes in the geological record. Acknowledging the

stochastic nature of the processes that drive the evolution of the landscapes at various

time scales involved is essential for building predictive models of sediment transport on

the Earth’s surface. However, traditional models often do not acknowledge the high

variability of the driving forces, broad scales of motion involved and the heavy-tailed

nature of events that shape the landscapes. This thesis research challenges existing

thinking and puts forth a new class of macroscopic sediment transport models which

take into account the probabilistic structure of the processes that shape the landscapes.

A new class of macroscopic sediment flux models that are based on non-local theories,

where sediment flux is not only a function of local hydro-geomorphic quantities but is

a linear function of the space-time history of the system, are introduced. The unifying

goal underlying this work is to develop sediment transport models that capture the ex-

treme heterogeneity of the involved processes over a large range of scales, consider the

presence of extreme fluctuations that arise due to the climatic forcing, and the spatial

heterogeneity of landscapes that affects sediment production, storage, movement and

delivery and to study how these surface dynamics are preserved in the Earth’s geological

record.
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Chapter 1

Introduction

Accurate models for computing the production of sediment from hillslopes, the trans-

port of this sediment through rivers, and its deposition on floodplains and low relief

areas, are essential tools for managing landscapes. Yet these sediment transport models

are hard to be derived from first principles and hard to be calibrated in the field due to

lack of detailed observations. As land-use changes, e.g., for agricultural or alternative

energy purposes, and as watershed management is geared towards a holistic approach

to sustainable-ecosystem-services, the need for integrated and accurate environmental

transport models spanning the scales of streambed, to hillslope to the whole watershed

have become an area of accelerated research. The availability of high resolution dig-

ital topography data from laser altimetry (LiDAR data at 0.5 to 1 m scale) and the

advancement of sediment dating techniques and smart environmental sensors have con-

tributed to the ability to critically re-examine the existing transport laws in the context

of hydro-geomorphology.

The proposed thesis research challenges existing thinking by putting forward a new

class of transport models that are able to account for the extreme heterogeneity of

the involved processes over a large range of scales (from collective particle motion in

streambeds to the large-scale motion of soil due to landslides on hillslopes), consider the

presence of extreme fluctuations due to floods and debris flows (which can accelerate

the movement of sediment much beyond the expected movement due to an average ve-

locity downstream) and the spatial heterogeneity of landscapes which affects sediment

storage, release and delivery. This research extends to both erosional and depositional
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landscapes, which are uplift driven and subsidence driven, respectively. The central

questions that the proposed thesis research addresses are: (a) How do hydrologic, bio-

logic and geologic processes, which show extreme variability over a broad range of space

and time scales, manifest themselves in landscape form?; (b) How much information

about the past climate and history of Earth-surface evolution can be deduced from

what is preserved in the stratigraphic record? The thesis is structured as follows:

• Chapter 2 briefly presents the background and motivation along with the main

results of this thesis research.

• In Chapter 3, a non-local theory of sediment transport on hillslopes is presented.

• Chapter 4 deals with the issues of scale-dependence of local, nonlinear and non-

local, linear sediment transport models on hillslopes.

• Chapter 5 presents a theoretical development that describes the dispersion of

tracers in gravel-bedded streams under the case that the sediment travel distances

follow a thin-tailed or heavy-tailed distribution.

• In Chapter 6, a new stochastic model for sediment transport in rivers is proposed

to explain the experimentally observed multi-scale statistics of sediment transport

rates.

• In Chapter 7, statistical characterization of the surface dynamics of an experimen-

tal deltaic system is presented.

• In Chapter 8, with the aid of numerical simulations, we relate the statistics of

surface dynamics to the statistics of 1D preserved stratigraphy.

• In Chapter 9, the kinematic controls on the 2-D geometrical structure of the

preserved cross-sets are studied.

• Chapter 10 presents concluding remarks and areas of future research.



Chapter 2

Background and Motivation

Landscapes are shaped by the interplay of hydrologic, biologic and tectonic processes

operating over a wide range of space-time scales. These processes leave their signature

on intricate patterns of hillslope to valley transitions, meandering and braided rivers,

and complex hierarchical tributary and distributary river networks. Over geologic time

scales, the space-time history of landscape evolution is preserved in the stratigraphic

record whose analysis can give information of the historical floods and droughts and

abrupt transitions due to earthquakes or tectonic events, offering, thus, valuable in-

formation for the future. In addition to natural processes shaping landscapes, human

activities interfere with the course of nature and induce acceleration or deceleration of

water and sediment fluxes in watersheds with shorter-term effects on river morphology

and longer-term consequences on landscape evolution.

Central to any quantitative understanding of Earth-surface evolution is the Exner

equation, which is a statement of mass balance [e.g., 14, 15, 16]:

∂z

∂t
= σ −∇.qs (2.1)

where z is the elevation of the Earth’s surface as measured from a datum, σ is some

tectonic forcing, either uplift or subsidence, and qs is the sediment flux. As it is clear

from the above equation, one of the keys to quantitative understanding and prediction

of Earth’s surface evolution lies in the accurate modeling of sediment flux. Sediment flux

models, in essence, should represent a parameterized version of the statement of con-

servation of momentum. However, this is a monumental task as geomorphic transport
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spans a wide range of space and time scales and deriving sediment flux relationships

from first principles is almost impossible and also impractical. Thus, sediment flux

models or geomorphic transport models should represent an essential abstraction of

the physical and statistical structure of the transport processes that shape the Earth’s

surface. Dietrich et al. [17] define a geomorphic transport model as “a mathematical

statement derived from a physical principle or mechanism, which expresses the mass

flux or erosion caused by one or more processes in a manner that: 1) can be param-

eterized from field measurements, 2) can be tested in physical models, and 3) can be

applied over geomorphically significant spatial and temporal scales.” They also noted

that geomorphic transport models are “a compromise between physics-based theory

that requires extensive information about materials and their interactions, which may

be hard to quantify across real landscapes, and rules-based approaches, which cannot

be tested directly but only can be used in models to see if the model outcomes match

some expected or observed state”. The essential goal of this thesis research is to both

highlight the importance and take into account the statistical structure (heterogeneity

and variability), along with the physics, of the process and form involved in geomorphic

transport.

Current geomorphic transport models for landscape evolution are mathematical for-

mulations framed around the underlying assumption of the existence of a representative

elementary control volume (REV) where the mass balance and sediment flux compu-

tation can be performed. In particular, this underlying assumption coupled with the

assumption of a statistically homogeneous system (i.e., the variability in the system has

a linear dependence on scale) facilitates the integration of the processes from micro-

scales in time and space to geomorphic model scales. Inherent to the assumption of

a finite REV is the presence of a characteristic space and time scale of transport in

the system. When no characteristic space and/or time scale of transport exists, then

the notion of performing mass balance over a characteristic scale (or the notion of flux

divergence converging as the volume shrinks to zero) loses its meaning [2]. Further,

assumption of a finite REV is inconsistent with the transport processes in which sig-

nificant amount of total flux comes from events across a broad span of frequency and

magnitude (as this would require one to account for the spatiotemporal memory of the

system). In many geomorphic systems, the time and length scales of motion vary widely:
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particles can be trapped for both short and long periods of time and can travel large

or small distances in very short intervals of time. This leaves us with the question: do

geomorphic systems exhibit a characteristic space and/or time scale of transport such

that the classical geomorphic transport models can be applied?

To understand this concept better, let us start with the well-known advection-

dispersion equation (ADE). This formulation is based on the classical definition of

divergence of a vector field. The divergence is defined as the ratio of the total flux

through a closed surface to the volume enclosed by the surface when the volume shrinks

to zero [e.g., 18, 1]:

∇.qs = lim
V →0

1

V

∫∫

S

qs.ηdS (2.2)

where qs is a vector field, V is an arbitrary volume enclosed by surface S, and η is a

unit normal vector. Implicit in equation (2.2) is that the limit of the integeral exists,

that is, the vector qs exists and is smooth as V → 0.

The classical notion of divergence maintains that as an arbitrary control volume

shrinks, the ratio of total surface flux to volume must converge to a single value. This

would hold true for a homogeneous system, where the total surface flux exhibits a linear

dependence on the control volume size. However, in many natural systems, hetero-

geneity and variability across many scales can result in a nonlinear dependence of the

total surface flux on control volume size. This would imply that the ratio of the total

surface flux to the volume will be scale-dependent. In particular, in systems in which a

considerable portion of the mass is contributed from far upstream (e.g., due to a large

variability in transport velocities, or due to collective behavior in particle movement),

we note that by increasing the control volume the total surface flux increases nonlinearly

(see Figure 2.1 left panel). Thus, the ratio of total flux to volume does not remain con-

stant but varies with the size of the volume. As a result, the classical diffusion equation

is no longer self-contained with a close form solution at all scales [e.g., 1, 19, 11, 2].

To adopt the classical theory, the best approximation that can be done is to as-

sume the total flux to volume as piece-wise constant within small ranges of scales (see

Figure 2.1 right panel), allowing one to talk about an effective scale-dependent disper-

sion coefficient. Alternatively, one can consider mass balance over an infinite volume,
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or equivalently, consider an integral or convolution Fickian flux. When the flux is ex-

pressed as a convolution integral of the hydro-geomorphic attributes of the system, that

not only include the local properties, but also the properties of the system that extend

away from the point of interest, we call the flux to be non-local in nature. Mathemati-

cally, when the convolution kernel takes a form of a power-law decay, then the flux can

be concisely expressed as a fractional (noninteger) derivative.
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Figure 2.1: Extended definition of divergence of particle flux when the system exhibits
heterogeneity over many scales, as expressed in a nonlinear total flux to volume relation-
ship. Linear approximation of total flux to volume in local neighborhoods (dashed lines
in left plot) enables the adoption of classical divergence (constant flux per unit volume
shown in the right plot) highlighting, however, the emergence of a scale dependence in
the dispersivity coefficient. An extended definition of divergence can be achieved by
adopting an integral or convolution Fickian flux using fractional derivatives. Figure
adapted from [1, 2].

This chapter is structured as follows. In the next section, we probe into the meaning

of non-locality of transport and understand it from both a statistical and a physical

viewpoint. We present background and motivation for the application of non-local

theories of transport, along with a short summary of main results, for erosional and

depositional landscapes in Sections 2.2 and 2.3, respectively.

2.1 What is non-locality of transport?

Sediment flux on the Earth’s surface comprises the transport of sediment particles,

for example, transport of solute particles in surface and subsurface water flows, soil
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particles undergoing biochemical transport and mixing by bioturbation, transport of

sediment particles in turbulent flows. Almost all these examples share a few common

features: (i) behavior of a well-defined ensemble of particles, which can be considered

as “tracers” whose total mass is conserved or otherwise accounted for if some physical

transformations or chemical reactions are involved; (ii) These sediment particles (trac-

ers) typically alternate between states of motion and rest over many time scales, with

most of the tracers of interest in Earth surface systems being at rest most of the time;

and (iii) when in transport, some sediment particles move faster, and some slower than

the average motion due to spatiotemporal variations in the mechanisms inducing their

motion [3]. Tracer motions thus may be considered as consisting of quasi-random walks

with rest periods.

2.1.1 Space non-locality

Consider an ensemble of tracers in motion in one-dimension. The movement of these

tracers can be characterized by the distances that they move, either in the downstream

or upstream direction. Consider that tracers are released into a flow at some location x0

at time t = 0 and they remain in motion. Most of the tracer particles will travel a short

distance, while some of particles can travel a really long distance. The distance traveled

by each of these sediment particles in a given time ∆t is a random variable, which we

call as the sediment travel distance and has its own probability density function (pdf).

After some time t, the sediment particles will be on an average at x = x0 + vt, where

v is the mean speed of the tracer particles and the spread around this mean location,

which is characterized by the standard deviation, grows in time as σ ∼
√
t. This

behavior is called as Fickian or Boltzmann scaling and can be characterized as “local”

transport phenomenon. This behavior is called local in that the sediment particles on

an average travel to nearby positions in a given time or conversely the sediment particles

arriving at a given location originate from the neighboring locations (see Figure 2.2 for

an Eulerian viewpoint). If C(x, t) denotes the concentration of the tracers at any given

space and time, then the evolution of the concentration of tracers is described by the

classical advection-dispersion equation. The Green’s function solution of the ADE is the

Gaussian distribution, which can be arrived at through arguments based on the Central

Limit Theorem [e.g., 20, 21, 3].
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However, if some of the sediment tracer particles travel a really long distance induc-

ing a large amount of variability in sediment travel distances such that a meaningful

variance (or mean) does not exist for the pdf of sediment travel distances, then the

standard advection-dispersion theory is no longer applicable. In such a case, the pdf

of the sediment travel distances is said to be heavy-tailed, which signifies that the tails

of the distribution are heavier (decay much slower) than their thin-tailed counterparts.

Heavy-tailed distributions are characterized by power-law decaying tails with an ex-

ponent −(α + 1) where 0 < α < 2. The parameter α is called the tail-index of the

distribution. From a statistical viewpoint, the primary reason for the classical theory

to break down here is because the Central Limit Theorem is no longer applicable as the

sum of independent, identically distributed random numbers converges to an α-stable

distribution, instead of a Gaussian distribution [e.g., 20, 3].

Two distinct cases arise here, namely, when 0 < α < 1 and 1 < α < 2. In the

former case, the sediment travel distances do not have an existing first moment (mean)

and second moment (variance). However, in the latter case, the particle travel distances

have an existing mean, but a non-existing theoretical second moment (variance). In the

case of heavy-tailed travel distances, particles can travel anomalously large distances,

albeit with a small (but finite) probability, resulting in a concentration spread around

the mean tracer location scaling as σ ∼ t1/α where 1 < α < 2. From this scaling

relationship, we can notice that the spread grows faster than normal diffusion and thus

we call this process ‘superdiffusion’. It is also worth noting that 0 < α < 1 corresponds

to the case, which describes a motion that is faster than pure advection (α = 1) and

is often referred to as ‘superadvection’. This behavior is called as “non-local” in space

in that during a small time interval, tracers released from position x0 mostly move to

nearby locations, but some move by unusually large distances. Conversely, during the

same time interval, tracers arrive at a given location, not only from its neighboring

locations but also from points far away from the point of interest (see Figure 2.2). In

such cases, the tracer concentration C(x, t) cannot be modeled using the classical ADE,

but one has to move into the realms of generalized transport models. These include the

fractional ADEs with a non-integer order derivative in space [e.g., 1, 22, 23, 21, 3] and

the related continuous time random walk (CTRW) models [see 24, 25, 26, 27].
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Figure 2.2: Figure reproduced from Schumer et al. [3]. Eulerian viewpoint of space
non-locality is shown. If the sediment travel distances have heavy-tailed pdfs, then the
particles can travel to a far away cell from a given cell in small intervals of time. Thus,
one needs to consider the whole system size while accounting for sediment flux at any
given location.

2.1.2 Time non-locality

Consider now an ensemble of sediment particles whose motions include states of rest

as well. The rest time or waiting time or residence time can also be considered as a

random variable. If the waiting times have an existing mean and are described by a thin-

tailed distribution, then the sediment particles motion can be described by a “virtual

speed” that includes both periods of rest and motion. The local rate of change in tracer

concentration, ∂C/∂t, in the classical ADE accommodates this. However, if the waiting

times are described by a pdf that is heavy-tailed with presence of unusually long rest

periods for tracers in storage, then this behavior can be described by a fractional-in-time

ADE. In this case, the fractional order of differentiation (integration) is in time, where

the standard ∂C/∂t is replaced by ∂γC/∂tγ with 0 < γ < 1. The dispersion now scales

as σ ∼ tγ/2, and since this spread is slower than normal Fickian dispersion, we refer

to it as “subdiffusion”. Non-locality in time, like the space non-locality, characterizes

long memory effect but in time, i.e., one needs to consider the influence from far back

in time (see Figure 2.3).
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Figure 2.3: Figure reproduced from Schumer et al. [3]. Eulerian viewpoint of time non-
locality is shown. If the waiting times have heavy-tailed pdfs, then the sediment flux
at a given time can feel the influence from far back in time. This long memory effect is
referred to as time non-locality and can be concisely encapsulated in a time-fractional
derivative.

An alternate way of understanding time non-locality is through the notion of opera-

tional time. We can consider the clock (physical) time to be made up of periods of rest

and the time for which the sediment particles are in motion, i.e., the time for which

the sediment particles are operated upon. Consider the situation not as a function of

time, but rather as a function of the number of steps that a sediment particle takes. We

can easily convince ourselves that the particle’s displacement is a function of number of

steps and is a discrete time random walk. Now we can consider the number of steps as

the internal, operational time governing the system’s evolution. The role of the wait-

ing times in this case reduces to the fact that the actual number of steps made up to

the time instant t fluctuates, so that the operational time is a random function of the

physical time t (see Figure 2.4) [4]. This notion of randomizing the clock time is called

as subordination, and when the randomized time has a heavy-tailed pdf then we move

into the realm of non-locality in time.

We note that both super diffusion (or advection) and sub diffusion imply that the be-

havior at a certain location depends not only on the local condition (nearby locations or
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Figure 2.4: Figure reproduced from Sokolov and Klafter [4]. Operational time of a
CTRW process with a power-law waiting time distribution between steps. The steps
follow very irregularily in physical time, and show step-free intervals on all time scales.
On the average, the operational time is in delay compared with the physical one.

present time), but also on the behavior upstream and/or what has happened in the past.

The behavior is thus non-local either in space or time or both. If the sediment particle

distances and their waiting times have heavy-tailed distributions, then the dispersion

scales as ∼ tγ/α, where γ relates to the tail-index of the waiting time distribution and

α relates to the tail-index of the sediment travel distances. One important observation

that can be readily made is that a particular value of γ/α can result from a non-unique

combination of values of α and γ. In this case, additional physical or observational in-

formation is needed to differentiate whether this anomalous dispersion has resulted from

heavy-tailed sediment travel distances, long waiting times or a combination of both.

2.2 Transport in net erosional landscapes

In this section, we will explore the applicability of the non-local sediment transport

models in net erosional systems. Net erosional systems are uplift driven, where there is

a balance between the net erosion and the uplift in the system. Some of the examples

include hillslopes, channels, rivers, etc. In a source to sink framework, net erosional

systems form the convergent part of the landscapes.

2.2.1 Transport on hillslopes

Hillslopes are shaped by varied disturbance-driven processes, ranging from gopher mounds,

bioturbation, wood blockage, freezing and thawing cycles, tree throws, landslides, etc.
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Each of these processes has its own event-based transport distances over which the sed-

iment particles are mobilized and transported. The frequency of occurrence of these

events that shape a given hillslope can vary greatly. Thus, sediment transport on hill-

slopes is a stochastic process where sediment mobilization and movement happens spo-

radically over a relatively long period of time. In a general form, we can treat sediment

flux on hillslopes as follows [e.g., 28]:

qs =
volume

event
× events

area
× distance

event
× events

time
(2.3)

where qs is the sediment flux [L2T−1]. The above expression is valid for each disturbance

event and also has the ability to encapsulate a whole range of disturbance processes.

We can combine the first two terms of equation (2.3) to get n × h, where n is the

number of events and h is the active soil depth. Further, identifying the last term in

equation (2.3) as the frequency of the events, we can write the expression for sediment

flux on hillslopes as:

qs = n× h× f × l (2.4)

where f is the frequency of events and l is the sediment travel distance. Several studies

have addressed the stochastic nature of the active soil depth and their dependence

on the local topographic slope [e.g., 29, 30]. However, the variations in the active

soil depth are much smaller than the variations in transport distances, and here we

neglect the variations in soil depth by treating it as a deterministic constant (H). This

approximation is akin to the active layer approach in modeling sediment transport on

river beds [e.g., 31].

The product of the number of events (n) and the frequency of events (f) in equa-

tion (2.4) gives us the waiting times (τ), under the assumption that sediment transport

on hillslopes happens instantaneously. This assumption is a relatively good approxima-

tion of the disturbance-driven processes as the most likely state of the sediment particles

is that of rest. Thus, the sediment flux can be expressed now as:

qs = H
l

τ
(2.5)

The ratio of the sediment travel distance and the waiting times in equation (2.5) is a

“pseudo mass velocity”, averaged over the stochasticity of the events that shape a given

hillslope. We note that the above definition of the sediment flux resembles the standard



13

continuum definition, which states that qs is a product of the mass velocity and the

depth of active soil mass, i.e., qs = vsh, which is the starting point for much of the

continuum modeling of sediment transport on hillslopes.

The standard models for sediment flux include the linear, local model [e.g., 32, 33, 34]

and the nonlinear, local model [e.g., 35, 7], both of which express the sediment flux

as a function of some local topographic attributes of the hillslopes. As discussed in

Section 2.1, critical to the application of the local vs non-local model for sediment

transport is the knowledge of the probability distribution functions of the sediment

travel distances and the waiting times. Equation (2.5), though built under certain

assumptions (that sediment transport on hillslopes happens instantaneously and the

active soil depth is a constant), gives us a means of probing into the (non) locality

of transport on the hillslopes. Following equation (2.5), now consider the pdf of the

sediment flux, f (qs), which is given by:

f (qs) = Hf

(
l

τ

)
(2.6)

Equation (2.6) states that the pdf of the sediment flux is directly proportional to the pdf

of the pseudo mass velocities. Recalling that heavy-tailed velocities are consistent with

non-local transport, while thin-tailed velocities are consistent with local transport, the

question arises as to whether one could infer (or get insight on) the pdf of pseudo mass

velocities by examining the pdf of sediment flux on hillslopes. To explore this question,

we need direct measurements of sediment flux in a given hillslope over a period of time

to get a reliable estimate of the pdf of the sediment flux, which are rare at best. Thus,

we resort to using sediment flux models to estimate the sediment flux from topographic

data of different field sites. The most common and widely accepted form of the sediment

flux model that is applicable on the hillslopes is the nonlinear flux model proposed by

Roering et al. [7](similar form was also arrived at in [35]):

qs =
−K∇z

1 − (|∇z|/Sc)
2 (2.7)

where K is the diffusivity, z is the topographic elevation measured from a datum, and

Sc is called as critical gradient, which relates to the angle of repose. The nonlinear flux

model has been extensively studied, validated, and the parameters of the model have

been calibrated in several field sites.
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We used the nonlinear flux model of equation (2.7) on two different landscapes,

namely, Gabilan Mesa (GM) and the Oregon Coast Range (OCR) to get insight into

the distribution of pseudo mass velocities. The parameters of the nonlinear flux model

were calibrated in these two field sites [5]. Figure 2.5 shows the estimated probability

of exceedance of the sediment flux, which is a reflection of the pdf of the pseudo mass

velocities according to equation (2.6). We note that the pdf of the pseudo mass velocities

in GM have an exponential tail, indicative of thin-tailed statistics and local transport.

However, the pdf of the pseudo mass velocities in OCR have a power-law tail (tail index

of α = 1.3), indicative of heavy-tailed statistics and non-local transport. OCR is a

steep landscape, which is shaped by varied processes such as debris flow, tree throw,

and landslides (processes which can move sediment by an unusually large distances);

whereas GM is a less steep landscape, which is shaped by slow rheological creep. Thus,

it could be argued that the nature of the transport (local vs non-local) on these hillslopes

is dependent on the variability of the external driving forces of sediment transport.

Heavy-tailed velocities and non-local transport can result from various combinations

of the nature of sediment travel distance and waiting time pdfs. Under the assumption

that sediment travel distance l and waiting time τ are independent, we used numerical

simulations to generate pseudo mass velocities (ratio of l/τ) by sampling l and τ from

two end-member distributions, namely, exponential pdf (thin-tailed) and Pareto pdf

(heavy-tailed). We conclude that the resulting pseudo mass velocities are thin-tailed

when the sediment travel distances are thin-tailed, independently of whether the waiting

times are thin- or heavy-tailed. Heavy-tailed pseudo mass velocities result when the

sediment travel distances are heavy-tailed, with the waiting times being either thin- or

heavy-tailed. Thus, it is evident that the nature of the pdf of the pseudo mass velocities

is a direct reflection of the nature of the pdf of the sediment travel distances, at least

under the assumption of independence of sediment travel distances and waiting times.

However, this assumption of independence is a strong one, which might not hold true for

real hillslopes. The waiting times and the sediment travel distances are both slaved to

the topographic features of the landscape, i.e., larger sediment travel distances that are

likely to occur at steep gradients in a landscape can have lesser waiting times and vice

versa, thus, indicating the presence of some dependence between the sediment travel

distances and waiting times.
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Figure 2.5: High-resolution LiDAR data (resolution of 1 m) of Oregon Coast Range and
Gabilan Mesa are shown in (A) and (B), respectively. Plots showing the probability of
exceedance of the estimated sediment flux from the hillslope pixels using the nonlinear
flux model of equation (2.7) in (C) Oregon Coast Range, and (D) Gabilan Mesa. Us-
ing equation (2.6), we note that the pseudo mass velocities in OCR are heavy-tailed
(pointing to a non-local model), whereas the pseudo mass velocities are thin-tailed in
GM (pointing to a local model). The parameters of the nonlinear flux model used were
K = 0.003 m2/yr and Sc = 1.2 for OCR and K = 0.038 m2/yr and Sc = 1.2 for GM
[5].
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In a general case, under no assumption of independence of sediment travel distances

and waiting times, we can express the pdf of the ratio of sediment travel distances and

waiting times, i.e., of the pseudo mass velocity, in terms of a joint distribution as:

f (qs) = H

∫
τf (lτ, τ) dτ (2.8)

It is clear from the above equation that we can not decouple sediment travel distances

and waiting times without a priori knowledge of their joint distribution and the distri-

bution of their product. However, such detailed field or experimental observations of

sediment travel distance and waiting time are seldom available, highlighting the need

for extensive field and laboratory observations to probe into the physical origins of

non-locality.

The issue of non-locality of transport on hillslopes is explored in depth in this thesis

research. In Chapter 3, we hypothesize that the heterogeneity of disturbance-driven pro-

cesses can lead to a heavy-tailed distribution of sediment travel distances. We proposed

that such a behavior calls for a non-local computation of the sediment flux, where the

sediment flux at a point is not strictly a function (linear or nonlinear) of the gradient at

that point only but is an integral flux taking into account the upslope topography (con-

volution Fickian flux). We encapsulated this non-local behavior in a simple fractional

diffusive model which involves fractional derivatives, with the order of differentiation

dictating the degree of non-locality. The model predicts an equilibrium hillslope profile

which is parabolic close to the ridgetop and transits, at a short downslope distance, to

a power law with an exponent equal to the parameter α (tail-index of sediment travel

distance) of the fractional transport model. Hillslope profiles reported in previously

studied sites support this prediction. Furthermore, we showed that the non-local trans-

port model gives rise to a nonlinear dependence on local slope and that variable upslope

topography leads to widely varying rates of sediment flux for a given local hillslope

gradient. Both of these results are consistent with available field data and suggest that

nonlinearity in hillslope flux relationships may arise in part from non-local transport

effects in which sediment travel distances increase with hillslope gradient. The proposed

hypothesis of non-local transport implies that field studies and models of sediment fluxes

should consider the size and displacement lengths of disturbance events that mobilize

hillslope colluvium.
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Further, we show that though nonlinear and non-local models of sediment trans-

port on hillslopes lead to similar morphological features at steady-state, they differ

in their application and their scale-dependence. Typically, topographic attributes are

computed from digital elevation data (DEMs) and thus their estimates depend on the

DEM resolution (1 m, 10 m, 90 m, etc.) rendering any sediment flux computation

scale-dependent. Often calibration compensates for this scale-dependence resulting in

effective parameterizations with limited physical meaning. In Chaper 4, we demonstrate

the scale-dependence of local nonlinear hillslope sediment flux models and derive a sub-

grid scale closure via upscaling. We parameterize the subgrid scale closure in terms of

the low resolution, resolved topographic attributes of the landscape, thus allowing the

reliable computation of a scale-independent sediment flux from low resolution digital

elevation data. We also show that the accuracy of the derived subgrid scale closure

model depends on the dimensionless erosion rate and the dimensionless relief of any

given basin. Finally, we present theoretical arguments and demonstrate that the non-

local sediment flux models are scale-independent. These concepts were demonstrated

via an application on a small basin (MR1) of the central Oregon Coast Range using

high-resolution LiDAR topographic data.

2.2.2 Sediment transport on river beds

The idea of diffusion or dispersion of bed load particles is central to the understanding of

sediment transport on river beds. This idea is at the heart of understanding kinematics

of downstream (or cross-stream) diffusion of tracer particles in experimental flumes or

natural rivers [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46], and also in understanding how

particle diffusion contributes to sediment flux under steady and unsteady conditions

of transport [e.g., 47, 43, 44]. The stones that make up the bed of gravel bed rivers

are transported as bed load during floods. During periods of overall transport, each

particle undergoes alternating periods of movement and rest. Movement consists of

rolling, sliding or saltation, which continues until a single step length of motion is

completed (see Figure 2.6). The particle is at rest when it is deposited, either on the

bed or deeper within the deposit.

Despite considerable research over the past several decades, the problem of accurate

estimation of bed load sediment transport in rivers remains unsolved. One of the main
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Figure 2.6: Figure reproduced from Gary Parker’s e-book. Definition sketch of a step
length of a sediment particle (shown as orange solid circle) - distance traveled from
when entrained until it is deposited again. The amount of time a sediment particle is
at rest before it is entrained again is called as the waiting time. The arrow indicates
the direction of flow - from left to right.

challenges lies in the fact that the motions of individual particles happen at random,

rendering the process of transport a stochastic process. As discussed in Section 2.1,

transport of tracers and their ensemble behavior will heavily depend on the nature of

statistics of the step length and waiting time of the sediment particles. A single step

length is defined as the distance traveled by a sediment particle once it is entrained

into the flow until it is deposited in the bed (see Figure 2.6). Further, the waiting

time can be defined as the time between deposition and next (following) entrainment

of a sediment particle. The importance of the stochastic nature of the step lengths

in bed load transport was recognized as early as the work of Einstein [48] and many

stochastic theories of sediment transport followed thereafter. The ensemble behavior of

the tracers and their concentration in natural sand-bed rivers was also studied as early

as the work of Sayre and Hubble [36]. Nikora et al. [40] have studied the diffusion of bed

load particles using the measured motion of individual particles in a canal as the basis

for ensemble averaging. They extracted from their data various statistical moments

characterizing particle location as a function of time. They delineated three ranges of

temporal and spatial scales, each with different regimes of diffusion: ballistic diffusion

(at the scale of saltation length), normal/anomalous diffusion (at a scale of step length)

and subdiffusion (at global scale). Their study thus represents a pioneering effort in the

identification of anomalous diffusion of bed load particles.

In the light of the new developments in characterizing non-local transport, this

thesis research re-examines some of our basic modeling approaches to tracer dispersal

and minimum complexity models of sediment transport. There is growing experimental
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and field evidence that the statistics of sediment transport can be non-local in nature,

even under steady, uniform conditions. For example, Bradley et al. [49] revisited the

Sayre and Hubble data and showed that the breakthrough curves of the tracers in the

sand bed rivers exhibited heavy-tails and Martin et al. [42] probed into the physical

basis for the sediment particles to have heavy-tailed step lengths and waiting times

under controlled experimental conditions.

One way to study the mechanism of gravel bed load transport is to seed the bed

with marked gravel tracer particles within a chosen patch and to follow the pattern

of migration and dispersal of particles from this patch. In Chapter 5, we invoke the

probabilistic Exner equation for sediment conservation of bed gravel, formulated in

terms of the difference between the rate of entrainment of gravel into motion and the

rate of deposition from motion. Assuming an active layer formulation, stochasticity in

particle motion is introduced by considering the step length as a random variable. For

step lengths with a relatively thin (e.g., exponential) tail, the above formulation leads to

the standard advection-diffusion equation for tracer dispersal. However, the complexity

of rivers, characterized by a broad distribution of particle sizes and extreme flood events,

can give rise to a heavy-tailed distribution of step lengths. This consideration leads to an

anomalous advection-diffusion equation involving fractional derivatives. By identifying

the probabilistic Exner equation as a forward Kolmogorov equation for the location of a

randomly selected tracer particle, a stochastic model describing the temporal evolution

of the relative concentrations was developed. The normal and anomalous advection-

diffusion equations are revealed as its long-time asymptotic solution. Sample numerical

results illustrate the large differences that can arise in predicted tracer concentrations

under the normal and anomalous diffusion models. They highlight the need for intensive

data collection efforts to aid the selection of the appropriate model in real rivers.

Further, several experimental studies showed the presence of non-Gaussian pdfs of

the sediment transport rates and also the elevation fluctuations [50, 51, 52]. Recent

studies have presented evidence that PDFs of bed elevation and sediment transport

rates depend on time scale (sampling time), but this dependence is not accounted for

in any previous stochastic models of sediment transport. Motivated by the need to

explain this rich multi scale structure of the sediment transport rates, in Chapter 6

we propose an extension of Brownian motion, called fractional Laplace motion, as a
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model for sediment transport that acknowledges the fact that the time over which the

gravel particles are in motion is in itself a random variable. We show that this model

reproduces the multiscale statistics of sediment transport rates as quantified via a large-

scale laboratory experiment.

2.3 Transport in net depositional landscapes

In this section, we will explore the applicability of non-local transport models to the

net depositional systems. In these systems, the amount of net deposition in the system

balances the rate of subsidence. Deltas are formed at the mouth of the rivers owing to

the deposition of the sediment that is carried by the rivers. Deltas around the world are

recognized to be one of the most vulnerable ecosystems. Understanding delta dynamics

and developing predictive models that form the basis of delta restoration are the need

of the hour. What are the system dynamics of a delta and how does a delta system

self-organize into a dynamical structure that sustains its subaerial structure?

Three distinct time scales were identified in the evolution of deltaic systems [53, 54].

The two end members of the time scales of evolution of the deltaic system are a “short”

time scale (time scale of evolution of bed forms and bars) and a “long” time scale (time

scales of basin wide deposition), which are deterministic in nature. On the short time

scales the channels in the deltaic system behave coherently and deterministically in

response to the sediment routing system, and the long time scale represents an upper

bound on which autocyclic variability sums to produce the average behavior of the

sedimentary system [53]. Sandwiched between these two deterministic time scales is an

intermediate time scale, where the deltaic system is driven by the so-called “mesoscale”

dynamics.

The mesoscale time range is the domain of stochastic behavior associated with avul-

sion and reorganization of the fluvial system. This stochastic behavior was acknowl-

edged as early as the work of Leeder [55], in which fluvial basins were filled by channels

avulsing at a constant frequency to random locations. Figure 2.7 shows a plan view

of an experimental delta basin, which clearly shows the presence of channels of varied

range of scales and also the braided structure of the channels. Braided channels have

been extensively studied for their statistical structure and it has been documented that
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they have a fractal structure [e.g., 56, 57, 58, 59]. Sapozhnikov and Foufoula-Georgiou

[57] also showed that the evolution of braided channels exhibit dynamic scaling. Fur-

ther, channels can be viewed as the fast transport paths (or least resistant) of sediment

transport. The heterogeneity in the channel lengths should then reflect in the sediment

travel distances. Also evident from Figure 2.7 is the presence of both mobile and immo-

bile phases of transport in the system, i.e., the sediment particle is in motion when its

location is occupied by a channel and the sediment particle is at rest when its location

is not occupied by a channel. The frequency of the channel visits to a given location

should be dependent on the avulsion frequency and the statistics of channel avulsions

should reflect in the waiting times of the sediment particles. Some of the basic questions

that this thesis research explores are the following: (a) which probability distributions

describe the processes that govern the depositional dynamics of the system and (b) what

physical mechanisms leave their signature on the pdfs that govern the surface evolution?

Figure 2.7: Plan view of an experiment under near steady state conditions in the Experi-
mental EarthScape (XES) facility located at Saint Anthony Falls Laboratory, University
of Minnesota. Figure reproduced from Voller and Paola [6].

Unlike net erosional systems, in net depositional systems the signature of the evo-

lution of the Earth’s surface is not only imprinted on its form but also is selectively
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preserved in the stratigraphic record. The architecture of the preserved stratigraphy

is a function of three characteristics of the depositional system: (a) topography of the

actively evolving surface, (b) kinematics of topographic evolution, and (c) rate of net

deposition [53, 60, 61]. Quantitative analysis of stratigraphy exposed in outcrops or

imaged in seismic data coupled to numerical modeling of sedimentary basin filling has

blossomed over the last 30 years, initiating with the pioneering works of Leeder [55]

and Allen [62]. The general goal for many of these studies was to develop tools to

invert stratigraphic data for paleoenvironmental conditions. Of the many challenges

associated with inverting the stratigraphic record one of the greatest is characterizing

how large-magnitude but infrequent events (e.g., avulsions, storms, floods) influence the

dynamics of depositional systems and how this information gets stored in stratigraphy.

Characterizing these large magnitude infrequent events is challenging because many of

these events have recurrence intervals with intermediate time scales (101 − 104 years)

which make them difficult to study directly or to constrain using dating techniques [54].

One of the goals of this thesis is to make advances in the statistical mapping of the

surface dynamics of depositional systems into the architecture of stratigraphy.

Stratigraphy preserved in alluvial basins selectively records information of the asso-

ciated Earth-surface dynamics and holds important information for reconstructing past

environmental conditions. However, erosional events erase part of the space and time

record of the Earths surface evolution in the stratigraphic column. In Chapters 7 and 8

we explore, through the use of physical and numerical experiments, the forward prob-

lem, that is, how the probabilistic structure of the processes that govern the evolution

of depositional systems relates to the probability distributions of the hiatus lengths in

time and the preserved bed thicknesses of the stratigraphic column. We show that the

extreme variability in the hiatus lengths in time, as evidenced by the heavy-tailed nature

of their probability distribution, results in the non-ergodic nature of the stratigraphic

column, which in turn leads to the Sadler effect (the apparent dependence of deposition

rate on time) [63]. Further, we show that the extremes associated with the erosional and

depositional events, caused by the channel dynamics in the depositional system, largely

cancel themselves out leaving no distinct imprint of their occurrence in the resulting

stratigraphic column. We also show that the variability of surface elevation increments,

as measured by the interquartile range of their probability distribution, has a robust
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and well-defined relationship with the preserved mean bed thickness, thus providing a

means of statistically inverting the stratigraphic record to infer the associated surface

dynamics.

Cross-stratified units are one of the most common features preserved in the strati-

graphic record formed by migrating ripples and dunes. Their geometry has been un-

derstood to depend on the movement, change in shape, and direction of travel of the

bed forms. In Chapter 9, we provide theoretical relationships that map the statistics

of surface kinematics of bed form evolution into the 2-D geometrical structure of the

preserved stratigraphy. The surface kinematics of bed form evolution is characterized

by the migration (translation of the waveforms) and deformation (change in shape of

the waveforms) of the bed forms. We show that the local slope and curvature of the

preserved stratigraphic deposits depend on the competition between migration and de-

formation of the evolving bed forms. Further, we show that deformation is the sole

cause for the formation of curved deposits in cross-stratified units and, for the first

time, provide quantitative relationship between curvature of preserved strata and the

deformation of the bed forms. The results presented in this study are validated us-

ing experimental data of bed form evolution collected under equilibrium, steady-state

conditions with no net deposition.



Chapter 3

A nonlocal theory of sediment

transport on hillslopes

In absence of overland flow-driven or wind-driven transport, the movement of soil on

landscapes requires some kind of disturbance (Figure 3.1). This disturbance arises in

many ways leading to a wide range of length scales of displacement. In clay-rich soils

mantling sloping landscapes, periodic wetting of the ground may cause swelling and

downslope flow, but even as the soils remain wet, progressively increasing grain resis-

tance may halt motion. Drying and cracking then resets the contacts and allows another

period of flow in the next wet season [64]. This cycle operates over some length scale

of displacement. Simple wetting expansion and drying col- lapse through a season can

incrementally shift near surface soils short distances downslope [e.g., 65]. Seasonal cy-

cles of movement by ice-driven processes shift soils and during spring melt can give

way as continuously moving solifluction lobes which may carry soil a considerable dis-

tance even on gentle slopes [e.g., 66]. Biota work the soil at a wide range of scales,

leading to dilation and displacement downslope. Insects and worms may cause minor

local displacement but through their persistent and pervasive activity cause significant

movement [e.g., 67]. Burrowing animals can make an extensive network of tunnels and

push piles of dirt meters downslope. The collapse of large trees may rotate and expose

their root system and displace clumps of soil meters downslope [e.g., 68, 28]. The ex-

posed, locally steep, tree throw mound and the smaller annual burrow mounds are sites

24
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of accelerated rain splash, raveling and fine scale biotic disturbance. In effect, the biotic

roughening of the ground surface by the local mound formation leads to accelerated

soil movement. On sufficiently steep granular soils, fire may suddenly remove particles

stored behind fallen woody debris and unleash particles to ravel downslope [e.g., 69],

sometimes tens of meters. Shallow landslides may also initiate, mobilize, and redeposit

on hillslopes. Soil movement, then, arises through the sum of stochastic processes, in-

fluenced by seasonal and biotic cycles, the integral of which is a net flux of soil which

tends to increase with increasing hillslope gradient. The individual particle step lengths

resulting from disturbances will vary greatly.

N
(x

)

Distance (x)

N
(x

)

Distance (x)

x

Bedrock
N(x) = Number of particles 

   from distance x

Figure 3.1: Cartoon illustrating processes such as gopher mounds, tree throws, and
wood blockage, which contribute to sediment transport on a hillslope. Owing to the
varied range of length scales of transport of these processes, the number of sediment
particles arriving at a given location downslope is influenced by a region of upslope
topography. This can be treated using the notion of a nonlocal flux (equation (3.8))
which is computed by a weighted average of upslope contributions.

On gentle hillslopes there is field evidence [e.g., 8] that the mean soil transport

varies linearly with local gradient. On steeper slopes, however, theory and limited
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observations suggest that transport increases nonlinearly with slope [e.g., 7]. Increasing

field and theoretical evidence indicates that flux also depends on active transport depth

[29, 70, 71]. In particular, Furbish et al. [71] show that a diffusivity-like coefficient which

takes into account the local slope depth product produces a sediment flux which varies

linearly with local gradient. Both linear and nonlinear flux laws assume that transport

depends on some “local” slope, although we lack theory for what sets the length scale

over which that slope should be determined. The disturbance by biota creates an

irregular ground surface, with locally steep piles of loose soil that diffuse downslope

across the mean slope (Figure 3.1). Hence, the slope at any point may not represent

the actively contributing slope-driving processes, and cannot account for travel distances

resulting from disturbances. If we could monitor every particle on a hillslope where these

disturbance-driven processes (often placed together under the term “creep”) occur, it is

possible that long transport events occur with a finite, non-vanishing, non-exponentially

decaying probability such that the pdf of transport distances is heavy tailed [e.g., 72].

This conception of soil transport may not be well represented by a transport expression

that relates flux to a “local” slope. Moreover, the possibility of heavy-tailed particle

travel histories makes selecting a meaningful mean slope for the application of such local

laws problematic. To date, empirical fitting procedures (reducing variance by increasing

the length scale of averaging while trying to maintain local profile curvature) have been

used for the estimation of the local slope; common methods include polynomial fitting

and Gaussian filtering [e.g., 7, 9].

Here we propose an alternative formulation of sediment transport on hillslopes which

relies on the notion of nonlocal computation of sediment flux, reflecting the fact that

mass flux at a point on the hillslope is being influenced by disturbances well upslope

and not simply linked to local slope (and soil depth). Our analysis may also explain

the variance in flux rate for a given local slope observed in some studies. Our theory,

although not derived from physical considerations (e.g., involving balances of forces

and resistances), presents a general mathematical framework within which the upslope

influences to the sediment flux at a given point can be cast into a continuum constitutive

law for sediment transport. Specifically, we propose a nonlocal formulation of transport

laws which relies on an integral (non-Fickian) flux computation which explicitly takes

into account the upslope topography from any point of interest. The proposed non-
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local transport model includes linear diffusive transport as a special case.

This chapter is structured as follows. In section 3.2, we formulate the nonlocal

constitutive law for sediment trans- port on hillslopes and in section 3.3 we derive its

steady state equilibrium profile under appropriate boundary conditions. In section 3.4

we interpret observed hillslope profiles in the Oregon Coast Range, in the Appalachians

of Maryland and Virginia, and east of San Francisco (California) within the nonlocal

transport formulation. In section 3.5 we compare the linear, nonlinear and nonlocal

transport models in several ways. The most important result is that the linear nonlocal

model gives rise to a nonlinear relationship between sediment flux and local slope, akin to

that observed on steep slopes. In section 3.6 we demonstrate that applying the non- local

flux model to an ensemble of hillslope profiles produces significant variability of sediment

flux for a given value of local slope as a result of variations in upslope topography. In

section 3.7, we discuss the relationship between the shape of the probability density

function of the sediment displacement lengths (which dictate the microscopic behavior

of the transport process but which are typically not measured) and the parameter a

of the nonlocal transport model (which describes the macroscopic properties of the

transport). In section 3.8 we present some preliminary thoughts as to the ability of

the nonlocal transport formulations to circumvent the scale dependence of sediment

flux computed using local, nonlinear models. We conclude that our model shows the

possibility that nonlocal sediment transport processes may be important on hillslopes

and warrant more consideration both in field studies and theoretically. Our model

anticipates more process-based considerations that would account mechanistically for

biotic disturbance and it suggests that models for transport and weathering of colluvial

soils and geochronological analysis of particles on steep hillslopes should consider the

possible effects of nonlocal transport.

3.1 A Nonlocal Constitutive Law for Hillslope Sediment

Transport: Convolution Fickian Flux

The simplest sediment flux law, proposed by Culling [32] in analogy to Fick’s law of

diffusion, expresses sediment flux as proportional to the topographic gradient:

qs(x) = −K∇h (3.1)
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where qs is sediment flux (volume per unit time per unit width: L3/L/T ) at location

x (where x is distance from the ridgetop), K is the diffusivity coefficient (L2/T ), and

h is the surface elevation with respect to a datum. It is easy to show [e.g., 73] that

substituting (3.1) in the continuity (Exner) equation:

ρr
∂h

∂t
= ρrU − ρs∇.qs (3.2)

where ρs and ρr are the bulk densities of sediment and rock, respectively, and U is the

rock uplift rate results in the linear diffusion equation:

∂h

∂t
= −U +K∇2h (3.3)

where we have assumed for simplicity that the bulk densities of rock and sediment are

the same (which is almost never the case) and have ignored chemical erosion. (Note that

equation (3.3) can also be derived using a moving coordinate system of erosion driven

by diffusive transport in which the uplift term enters as a lower boundary condition.)

If the rate of surface erosion is approximately balanced by the rock uplift, i.e., dynamic

equilibrium [74, 75], then ∂h/∂t ≈ 0 and the steady state 1D case can be written as

∂h

∂t
= 0 ⇐⇒ ∂2h

∂x2
= −U

K
(3.4)

Integrating twice and imposing the boundary conditions

h(0) = Htop =
U

2K
L2 (3.5a)

dh

dx
|x=0 = 0 (3.5b)

such that h(L) = 0 (river edge), the solution is given by

h(x) = Htop −
U

2K
x2 (3.6)

for 0 ≤ x ≤ L [e.g., 76]. Furthermore, the properties of the equilibrium hillslope profiles

predicted by linear diffusion are (3.1) linear increase of local slope with down- slope

distance and (3.2) constant curvature along the hillslope profile.

The underlying assumption of a classical diffusion equation is that the step lengths of

sediment particles, defined as the distances traveled by the particles once entrained until
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they are deposited again on the surface, have a thin-tailed (e.g., exponential or Gaussian)

distribution [e.g, 3, 41]. However, for the reasons discussed in the introduction, the

distribution of step lengths of sediment particles may be heavy tailed; that is, they

have a small but significant chance of traveling a large distance downslope. In such

cases, the sediment flux at a point x has a significant contribution from a large upslope

distance and thus a local computation of flux, such as that of equation (3.1), is no

longer appropriate. Recently, a particle-based model for sediment transport on hillslopes

was developed based on a plausible set of rules capturing disturbance-driven transport

processes and it was shown that a heavy-tailed step length distribution can emerge due

to the interactions between these disturbances and micro-topography [72]. Here, we

develop a continuum constitutive model for such a behavior. Specifically, we propose a

notion of nonlocal sediment flux which takes into account the heavy tails in step lengths

of sediment particles by expressing the sediment flux at a given point as a weighted

average of the upslope topographic attributes:

q⋆
s(x) = −K∗

∫ x

0
g(l)∇h(x − l)dl (3.7)

where q⋆
s(x) is sediment flux(volume per unit time per unit width: L3/L/T ) at location

x (where x is distance from the ridgetop), K∗ is the diffusivity coefficient, h(x) is the

topographic elevation at location x, and g(l) is a kernel performing a weighted average

of local gradients upslope of the point of interest x as they contribute to the sediment

flux at the point x (Figure 3.1). This is a special case of the more general convolution

Fickian flux laws [77, 78]. It has been shown [22] that when the weighting function g(l)

has no characteristic length scale, i.e., when g(l) decays as a power law with the lag l,

g(l) ∼ l1−α, (3.7) takes the form of a fractional derivative:

q⋆
s(x) = −K∗∇α−1h(x) (3.8)

where α ∈ (1, 2). Substituting (3.8) in the continuity equation (3.2) and making the

assumption that bulk densities of rock and sediment are equal, leads to a fractional

diffusion equation:
∂h

∂t
= U +K∗∇αh (3.9)

The order of differentiation, α, directly relates to the heaviness of the distribution

of step lengths [21, 79, 80, 3] and 1 < α < 2 implies a distribution of step lengths
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with a finite population mean but infinite population variance (sample variance that

diverges unstably as the number of samples increases) [81], resulting in an accelerated

diffusion (superdiffusion). It is noted that for α = 2, (3.8) becomes the standard Fickian

flux (3.1), and (3.9) collapses to the linear diffusion equation (3.3).

The concept of nonlocal transport, implemented via fractional derivatives or Con-

tinuous Time Randon Walk (CTRW) models, has been extensively used in other fields

of study, such as subsurface transport [e.g., 82, 27], transport of pollutants in rivers

[83, 84], hydrodynamics [e.g., 23], statistical mechanics [e.g., 24, 26, 25], molecular biol-

ogy [e.g., 85] and turbulence [e.g., 86, 87]. Recently, it has been used in geomorphology

to encapsulate the nonlocality of bed sediment transport along bedrock channels [88]

and to model the anomalous diffusion of tracer particles in gravel streams and sand bed

rivers [41, 49]. A review of the application of partial fractional differential equations to

the transport of solutes and sediment can be found in the work of [3].

3.2 Equilibrium Hillslope Profiles for Nonlocal Transport

In order to derive the equilibrium hillslope profile for the fractional diffusion equa-

tion (3.9) we note that under dynamic equilibrium, the steady state 1-D equation can

be written as
∂h

∂t
= 0 ⇐⇒ ∂αh

∂xα
= − U

K∗
(3.10)

The two most commonly used definitions of a fractional derivative are the Riemann-

Liouville and the Caputo forms [89]. These forms differ from each other in that the

Riemann-Liouville definition expresses the fractional derivative as an integer order dif-

ferential of a fractional integral (equation (11a)), whereas the Caputo definition ex-

presses the fractional derivative as a fractional integral of an integer order derivative

(equation (11b)):
dαh

dxα
=

dn

dxn

(
In−α
x h(x)

)
(3.11a)

dαh

dxα
= In−α

x

(
dnh(x)

dxn

)
(3.11b)

where n is an integer such that n − 1 < α < n and In−α
x (.) is a fractional integration

operator of order n − α. This distinction is important in the case of boundary-valued
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and initial-valued problems as the Riemann-Liouville definition requires the calculation

of the derivatives of the fractional integrals of the function at the initial value, whereas

the Caputo definition only requires the calculation of initial values of the function and

its integer derivatives (see [6] for a detailed discussion). It is further worth noting that

the Caputo fractional derivative (equation (11b)) of a constant is zero, and in this form

a fractional integral and a fractional derivative are commutative, whereas the Riemann-

Liouville fractional derivative (equation (11a)) of a constant is a power law. Specifically,

the α-order fractional integral of a constant c is a power function:

Iα
x {c} =

c

Γ (1 + α)
xα (3.12)

where Iα
x {.} is the fractional integral operator of order α, c is a constant and Γ() is

the gamma function [90]. Implementation of the fractional derivative on a finite domain

0 ≤ x ≤ L with boundary conditions, requires defining the functional value h(x) beyond

the left boundary that is for x < 0. In a boundary-valued problem, the Caputo form

of the fractional derivative assigns the values of the function (in this case h(x)) beyond

the boundary to be equal to the value of the function at the boundary, i.e., it inherently

assumes that h(?∞) up to h(0) are assigned the value of h(0) = Htop. This, however, is

physically unreasonable as no sediment is supplied at the ridge from any point beyond

the ridge. In order to circumvent this issue we numerically evaluate the steady state

equilibrium hillslope profiles predicted by equation (3.10).

A fractional derivative can be discretized using the one-shift Grünwald expansion

[91]:

∂α−1h(x)

∂xα−1
≃ 1

∆xα−1

N∑

k=0

gkh (x− k∆x+ ∆x) (3.13)

where gk are the one-shift Grünwald weights, ∆x is the spatial grid size in the numerical

evaluation, N is the number of node points upslope of the given point and ∂α−1/∂xα−1

is the fractional differentiation operator of order α − 1 (1 < α ≤ 2). The Grünwald

weights are given as [92, 91]:

gk =
Γ(k − α+ 1)

Γ(−α+ 1)Γ(k + 1)
(3.14)

Imposing the boundary conditions

h(0) = Htop =
U

Γ (1 + α)K∗
Lα (3.15a)
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Figure 3.2: Steady state hillslope equilibrium profile predicted from fractional diffusive
transport (equation (3.9)) with α = 1.5 and boundary conditions of zero slope at the
ridge and zero elevation at the most downslope point. The parameter of the model K∗

was chosen to be 1.0 m1.5/yr and the rock uplift rate was set to unity [m/yr] (Note that
a different value of rock uplift rate would not change the shape of the profile but only
its absolute elevation would differ). (a) Profile shape and (b) log-log plot of vertical
drop from the ridge top versus downslope distance. Notice the transition to a power
law profile with exponent α = 1.5 at a distance of approximately 3 m from the ridgetop
(arrow).
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dh

dx
|x=0 = 0 (3.15b)

such that h(L) = 0 at the river edge, and imposing an additional condition that

h(x) = 0 for x < 0 (since there is no sediment supply to the domain from any point

beyond the ridge), one can solve numerically for the steady state equilibrium hillslope

profiles predicted by equation (3.10). Figure 3.2(a) shows the hillslope equilibrium

profile for fractional transport with degree of nonlocality α = 1.5. It is noted that the

hillslope profile is parabolic close to the ridge and transitions to a power law with an

exponent of α.

It is worth noting that under the Caputo form of the fractional derivative (which

assumes that the values of h(x) = Htop for x < 0), equation (3.10) can be solved analyt-

ically. The analytical solution of equation (3.10) with the boundary conditions (3.15)

and h(x) = Htop for x < 0 is given as

h(x) = Htop −
U

Γ (1 + α)K∗
xα (3.16)

where x is the horizontal distance from the ridgetop, and Htop is the elevation of the

ridgetop. As shown in Figure 3.2(b), this solution is reached in the numerically evaluated

profile (which assumes h(x) = 0 for x < 0) only at a finite distance downslope of the

ridge when enough upslope topographic distance exists for the nonlocal contribution to

substantially contribute to the sediment flux at a given point. Hence overall, the steady

state hillslope equilibrium profile is parabolic near the ridgetop and becomes, shortly

after, a power law profile with an exponent α (given by equation (3.16)). Further, we

note that the steady state solution to the fractional diffusion equation predicts power

law relationships of local gradient and curvature with downslope distance given by

−∇h ∼ xα−1 (3.17)

∇2h ∼ xα−2 (3.18)

That is, the fractional flux law predicts that curvature downslope of the ridge is not

constant but decreases with downslope distance in a manner dictated by the exponent α

(such a decrease has been documented, for example, in field observations in the work of
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Roering et al. [7]). For α = 2 the nonlocal transport model reproduces the linear profile

in gradient and constant curvature with downslope distance, as expected for linear

diffusive transport, while values of a between 1 and 2 give the flexibility of reproducing

a suite of observed hillslope profiles. In section 4, we analyze field data from several real

hillslopes and show that they are consistent with the nonlocal hypothesis of sediment

flux.

3.3 Observed Hillslope Profiles Interpreted Within the Non-

local Transport Theory

The one-dimensional nonlocal theory presented here applies to hillslope profiles in which

transport is assumed to be only along that profile, i.e., a one-dimensional approximation.

Hillslopes, however, typically have significant contour (planform) curvature (i.e., ridges

and hollows) and at steady state such curvature can accommodate the increasing soil

production that must be carried downslope such that a single profile along the hillslope

can be straight even in the case of linear flux-dependent transport and spatially constant

erosion rates. Only a few detailed studies of hillslope form and process have been

reported on hillslopes without significant planform curvature. Here we reexamine three

well-known study sites (one clearly lacking planform curvature) and interpret them

within the proposed nonlocal flux theory.

Roering et al. [7] motivate their work on non-linear flux laws by reporting hillslope

profiles in the Oregon Coast Range that clearly deviate from parabolic shape or con-

stant curvature. Their study site experiences large scale disturbances due to massive

tree throw mounds [29], mammal burrowing and periodic fire [69] and there is evi-

dence for approximate steady state with considerable local variation over time scales

of hillslope soil adjustment and development [7, 29, 93]. One of their profiles is shown

in Figure 3.3(a) and the log-log plot of elevation fall versus horizontal distance (Fig-

ure 3.3(b)) suggests a slope of 1.3 for distances beyond 10 m downslope of the ridgetop

and a slope of 2 close to the ridge (only 3 points are shown in Figure 3.3(b) at distance

0 to 10 m, but the slope of 2 is supported by more points obtained from the interpo-

lated profile shown by the dashed line in Figure 3.3(a)). This profile is consistent with

the nonlocal flux hypothesis and suggests that the nonlocal transport model proposed
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herein might be an alternative to the nonlinear model of Roering et al. [7]. The concep-

tual bases of these two models are fundamentally different as they hypothesize different

mechanisms of erosion and transport. This profile will be further analyzed in section 5.

In their seminal paper on the geomorphology and forest ecology of the Shenandoah

River area of Virginia, Hack and Goodlett [94] report the result of plotting fall against

distance for both their intensely surveyed study site and for a broad survey of 27 hill-

slopes in the Appalachians in Maryland and Virginia. They propose that the many

regularities of the landforms and soils in the studied regions suggest steady state land-

scape adjustment. Ignoring the data points close to the divide, they report log-log linear

profiles with a slope of 1.23 for the survey site and values ranging from close to 1 up to

1.7 for Maryland and Virginia. It is not clear how the broad survey data were collected

(in the field versus from available topographic maps), nor whether they avoided slopes

with planform curvature, but it is worth noting that the profiles do not include data

points near the divide. They conclude that steeper hillslopes are generally straight (a

values close to 1) and gentle ones more curved (a values closer to 2). Within our theory,

this would suggest nonlocal transport on steeper hillslopes and local transport (linear

diffusion) on gentle slopes. Hack and Goodlett [94] describe soil transport as being

driven by “growing roots, burrowing animals, falling raindrops, frost, tree blowdowns

and the like” (p. 58). These processes would create a wide range of transport distances

for a given slope. Specific localities and erosion rates for the hillslope profiles are not

reported, so we must consider this suggestion as only a possibility, not an established

condition.

McKean et al. [8] selected a hillslope transect with minimal planform curvature in

the grasslands east of San Francisco, CA underlain by marine shales and documented

soil transport rates using 10Be concentrations in the clay-rich soils (Figure 3.4). From

analysis of three soil pits within the first 35 m of hillslope length (from the ridge) they

found evidence for a linear flux law and quantified the diffusive rate constant K (i.e.,

equation (3.1)). The soil transport occurs by seasonal creep of the high-plastic clay

with biogenic transport being of some importance near the divide. Soil thickness varies

inversely with curvature, consistent with a balance between soil production and linear

transport [95, 96]. The thickness is about 40 cm near the ridge and then increases

downslope. Boundary conditions (channel incision rate and history) strongly influence
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Figure 3.3: (a) A hillslope profile in the Oregon Coast Range. Solid circles represent
the observed data points (reproduced from [7]) and the dashed line indicates a spline
fit to the observations. (b) Log-log plot of the fall from the hilltop versus horizontal
distance for the above profile. Notice the power law profile with exponent 1.3 starting
at a distance of 9 m from the ridgetop (arrow) consistent with a nonlocal transport law
with parameter α = 1.3.
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hillslope profiles and at this study site the hillslope terminates in a broad, aggraded

valley, which has led to a break in slope at the base of the hillslope and progressive

thickening of soil toward the valley axis [95]. Both Yoo et al. [95] and McKean et al. [8]

suggest that the upper smoothly convex hillslope could be at approximate steady state

erosion, that is, the effect of stabilization of the lower boundary has not reached to the

divide.

We used the survey data collected by McKean et al. [8] to construct the longitudinal

profile reported in Figure 3.4(a). By plotting on a log-log scale the elevation fall versus

horizontal distance from the ridge (Figure 3.4(b)) we observe a slope of ≈ 1.8 from a

distance of 8 m from the ridgetop up to approximately 25 m downslope; in the first 8

m from the ridgetop one would expect a parabolic profile (slope of 2). The hillslope

rapidly flattens upslope from 8 m and the available survey data do not provide adequate

constraint on the profile shape. The gentle hillslope gradient and high clay content

(which favors creep) and the dry, grassy, relatively low biota mantle on the convex

hilltop all would favor an almost local transport, and the slope value of 1.8 extending

for the first 25 m is consistent with this expectation. Downslope of 50 m to the lowest

portion of the hillslope surveyed the slope of the power law plot of elevation against

distance is ≈ 1.2. This transition is not consistent with the nonlocal flux law of α = 1.8

discussed above; rather the bottom part of the hillslope is interpreted as experiencing

a change from net erosion to progressive soil accumulation (due to lower boundary

conditions) and field observations support this interpretation. This example illustrates

that the nonlocal flux theory can also be used as a diagnostic tool for inferring process

from form and further motivate data collection to test alternative hypotheses.

3.4 Nonlocal Versus Nonlinear Flux: Same Behavior for

Different Reasons

3.4.1 Nonlinear Transport Model as an Emulator of Superdiffusivity

Deviation from purely diffusive behavior in many hillslopes has prompted the develop-

ment of more complex transport laws which have a nonlinear dependence on topographic

gradient. A review of several of these laws can be found in the work of Dietrich et al.



38

0 10 20 30 40 50 60 70 80
115

120

125

130

135

140

145

Downslope distance (m) 

E
le

v
a

ti
o

n
 (

m
) 

10 50 100

10
−1

10
0

10
1

10
2

Downslope distance (m)

F
a

ll 
fr

o
m

 t
h

e
 r

id
g

e
to

p
 (

m
)

Slope ≈  1.8

Slope ≈  1.2

(a)

(b)

20

Figure 3.4: (a) Longitudinal profile of a hillslope reproduced from the survey data col-
lected by McKean et al. [8]. (b) Log-log plot of the fall from the hilltop versus horizontal
distance. Notice the power law regime with exponent 1.8 starting at approximately 8 m
from the ridgetop until 25 m downslope. This profile is consistent with a nonlocal flux
hypothesis with exponent α = 1.8. The abrupt transition to a slope of 1.2 on the lower
portion of the hillslope is indicative that this part is still experiencing changes from net
erosion to progressive soil accumulation.
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[17]. For example, for soil mantled hillslopes, Roering et al. [7] proposed the following

flux equation (see also [35, 73]):

q′s =
−K∇h

1 − (|∇h|/Sc)
2 (3.19)

where q′s is the sediment flux calculated at a point via the nonlinear flux law, K is the

diffusivity coefficient, and Sc is called the “critical gradient”. It is noted that the above

equation imitates a superdiffusive behavior, that is, close to linear diffusion at low slopes

and accelerated diffusion at high slopes. Although this can be directly seen from (3.19),

it is interesting to see it from a different perspective. By substituting (3.19) in (3.2)

and performing a Taylor series expansion we obtain

∂h

∂t
= K∇2h+K

∇2h

S2
c

(|∇h|)2 + . . . (3.20)

The second term in the RHS of (3.20) shows that the nonlinear transport law of (3.19)

captures the superdiffusive behavior at high slopes by enhancing the regular diffusion

with the addition of a term that has an explicit nonlinear dependence on gradient. The

gradient in the above equation is “local”. We propose that such superdiffusive behavior

in steep hillslopes can be addressed using nonlocal transport laws, which are linear

(i.e., they involve only linear combinations of local gradients) but take into account

that disturbances contributing to sediment flux at a point of interest have an origin far

upslope of that point. It is interesting to note that the proposed nonlocal flux law gives

rise to a nonlinear dependence of sediment flux on the local gradient at any point (this

will be presented in section 5.2) but for reasons different than the explicit quadratic

dependence of flux on local gradient as in equation (3.20).

3.4.2 Nonlocality Gives Rise to a Nonlinear Dependence of Flux on

Local Gradient

We use the hillslope profile from the Oregon Coast Range [7] to illustrate the computa-

tion of the sediment flux from the nonlocal transport model of (3.8) and compare it to

those of the linear (3.1) and nonlinear (3.19) models. In order to have a continuous set

of elevation data points over the domain of interest, the observations were interpolated

using a spline as shown in Figure 3.3(a) with dashed lines.
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The computation of the fractional flux was performed on a discrete grid of size ∆x

by the Grünwald-Letnikov discrete approximation of the fractional integral operator

given as [92, 97]

∇α−1h(x) = I2−α
x {∇h(x)} = lim

∆x→0
(∆x)2−α

x/∆x∑

k=0

Γ (2 − α+ k)

k!Γ (2 − α)
∇h (x− k∆x) (3.21)

It is noted that writing the fractional flux as a fractional integral of the local slopes

(first equality in the above equation) is enabled by use of the Caputo definition of the

fractional derivative (equation (3.11b)).

The parameters chosen for the three flux laws (linear, nonlinear and nonlocal) are

K = 0.0015 m2/yr, Sc = 1.4, α = 1.5 and K∗ = 0.0007 mα/yr. The model parameters

for the nonlinear flux law are chosen from the ones calibrated for Oregon Coast Range in

the work of Roering et al. [7]. For the nonlocal flux law, α is set to 1.5 and K∗ is chosen

such that all the three flux laws show a similar increase in sediment flux with slope at

lower gradients. This is done in order to study the effect of the three flux laws at the

higher gradients. Figure 3.5 shows the sediment flux computed using the three different

flux laws. The sediment flux computed from the nonlocal transport law (3.8) shows a

similar behavior as the nonlinear, local transport law (equation (3.19)), with enhanced

diffusion at higher gradients. Hence, a nonlinear relationship between sediment flux and

local gradient can also arise from a nonlocal, linear flux model. It is emphasized that

in a real hillslope, the parameters K for the non-linear model and K∗ for the nonlocal

model are obtained via calibration; the unfamiliar units of K∗ (Lα/T ) are not an issue

and simply reflect that the quantity (K∗t)1/α maintains the units of length (length scale

of diffusion) in analogy to the quantity (Kt)1/2 for standard diffusion [e.g., 1].

3.4.3 Nonlocality and Upslope “Region of Influence”

The nonlocal transport law differs from any local transport law (linear or nonlinear) in

that in the former, the sediment flux contribution to a given point on the hillslope is

computed from a weighted average of the topographic gradients upslope of that point.

Therefore, unlike the local transport laws, the nonlocal transport law has a “memory”

of the upslope topography. Although the power law kernel g(l) of the nonlocal integral

flux (equation (3.7)) implies lack of characteristic scale over which the averaged gradient
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Figure 3.5: Comparison of the three flux laws. The dashed line shows the sediment flux
predicted by linear, local flux law (equation (3.1)). The thick line shows the sediment
flux predicted by the linear, non-local law (equation (3.8)), and the thin line shows the
sediment flux predicted by local, non-linear law (equation (3.19)). The parameters for
q′s are chosen to be K = 0.0015 m2/yr and Sc = 1.4 (from [7]). The parameters for the
calculation of q⋆

s are chosen to be α = 1.5 and K∗ = 0.0007 m1.5/yr.

is computed, we take the liberty below to introduce a cutoff scale in order to illustrate

this upslope influence effect. Specifically, we introduce a physically tangible measure of

nonlocality for the computation of sediment flux by defining an influence length, La, as

the distance upslope from a given point, beyond which the contribution of the sediment

flux is less than 10% of the total; that is, Lα is defined by the equation

K∗

∫ Lα

0
g(l)∇h (x− l) dl ≈ 0.9q⋆

s(x) (3.22)

where g(l) ∼ l1−α (1 < α < 2) are the weights given to the gradients uplsope and q⋆
s

is the nonlocal flux calculated by (3.8). The cutoff of 10% is chosen here arbitrarily

to illustrate the behavior of nonlocal flux and it can be chosen to be lower or higher

depending on the problem at hand.

The influence length was calculated for the Roering [7] profile from equation (3.22)

for three different values of a and is shown in Figure 3.6. The degree of non-locality

increases with a decrease in α; that is, the closer the value of α is to 1.0 the more

nonlocal the transport is compared to a value of α closer to 2. As expected, a higher

degree of nonlocality results in a larger value of Lα as seen in Figure 3.6. For α = 2,
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equation (3.22) is not applicable for computation of the influence length. In this case,

the step lengths have a thin-tailed distribution whose characteristic scale (standard

deviation) can be used to define the influence length.
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Figure 3.6: Plot showing the upslope influence length La (see text for definition) as a
function of local gradient and degree of non-locality for the hillslope of Roering et al. [7].
The dashed line indicates the distance to the ridgetop, in other words, the maximum
available distance to take part in the transport.

3.5 Nonlocality Naturally Reproduces Spatial Variability

of Sediment Flux

In section 5, all the flux laws were discussed in the context of a single hillslope profile.

However, even in a small hillslope, there exists considerable variability in the form of

hillslope profiles which results in a considerable variability in the observed sediment

flux. This flux variability was documented by Roering et al. [7] for the MR1 basin of

Oregon Coast Range. They computed the sediment flux using

qs = U
ρr

ρs

a

b
(3.23)

where U is the constant rock uplift rate, ρr and ρs are bulk densities of rock and sedi-

ment, respectively, and a/b is the drainage area per unit contour length, and compared

it against the flux computed from their nonlinear transport model. Figure 3.7 (repro-

duced from [7]) shows the spread of the computed sediment flux as a function of gradient.
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Notice that for a given gradient, say for a gradient of 0.8 there is an order of magni-

tude variability in the computed flux. To describe this variability with the nonlinear

law, equation (3.19), the calibrated parameters of the model had to vary considerably:

K = 0.0015 m2/yr to 0.0045 m2/yr and Sc = 1.0 to 1.4 as reported by Roering et al.

[7]. We note that Sc is a calibration parameter which was attached a physical meaning

of a critical slope and was related to the angle of repose in the work of Roering et al.

[7]; later in the work of Roering and Gerber [69] it was proposed that K increased and

Sc decreased in response to forest fire.
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Figure 3.7: Reproduced from [7] to illustrate the large natural variability of calculated
sediment flux (dots) even in a small hillslope (MR1 basin in Oregon Coast Range;
sediment flux calculated using equation (3.23)) and the wide range of fitted parameters
K (m2/yr) and Sc that would be needed to reproduce the observed variability under
the assumption of a nonlinear local transport law.

Here we pose the hypothesis that a non-local transport model can capture the ob-

served variability of sediment flux within a given hillslope by a single or very narrow

range of parameters, unlike any local transport law. To test the hypothesis, we generated

a set of hillslope profiles using different cubic polynomials (see Figure 3.8) to imitate

the natural variability of hillslope profiles within a small basin. Along those profiles the

sediment flux was computed using the nonlocal, linear flux model (equation (3.8)) and

local, nonlinear flux model (equation (3.19)). Figure 3.9 shows the computed sediment
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flux as a function of the local gradient.
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Figure 3.8: Plot showing the suite of generated hillslope profiles to imitate the natural
variability of profiles (flow paths perpendicular to contour lines) in a zero-order basin.
The thick line indicates the profile reproduced from [7].

The nonlocal transport law with a single set of parameters K∗ and a produces a

variability of sediment flux for a given gradient comparable to that observed in real hill-

slopes (Figure 3.7). However, the local transport law cannot reproduce this variability

with a single set of parameters K and Sc but requires a considerable range of parameter

values as indicated by the envelope curves in Figure 3.9. This is simply because two

points with the same local slope would result in the same flux from any local transport

law but different fluxes from a nonlocal law, due to different upslope topography. Having

the need for such a wide range of parameters to reproduce the sediment flux variability

in a small hillslope makes physical interpretation of those parameters difficult. Apart

from the upslope hillslope profile variability considered here, there are other factors

contributing to the sediment flux/local gradient variability, such as, for example, the

dependence of K on soil depth [e.g., 70].

3.6 Probability Distribution of Particle Displacement and

Fractional Transport

Sediment transport on hillslopes can be thought of as disturbance driven, in which soil is

mobilized en masse or as individual particles. A single disturbance event may move the
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Figure 3.9: Sediment flux computed on the suite of hillslope profiles (shown in Fig-
ure 3.8) using the linear, nonlocal transport law (equation (3.8)) with parameters
α = 1.5 and K∗ = 0.0007 mα/yr (open circles). Note that while these parameters are
kept constant, a large variability of the sediment flux is produced due to the variability
in the ensemble of profiles. In order to reproduce this variability with the nonlinear
transport law (equation (3.19)), the range of fitted parameters required (concentrating
on the higher gradients where the nonlinear transport law is more pertinent; see also
Figure 3.7) is K = 0.00195 m2/yr and Sc = 1.4 and K = 0.00275 m2/yr and Sc = 1.25
(broken lines).

mobilized sediment a considerable distance (e.g., raveling after a fire). Disturbed piles

of sediment (e.g., tree throw mounds) will create sustained local areas of elevated flux

and increased downslope delivery. For simplicity we can think of event-based transport

as a kind of “hopping” process, where the sediment moves downslope in a series of

steps resulting from local disturbances. Here a single hop can be thought of as the

distance covered by a grain of sediment from where disturbance has displaced it into

an active flux state to where it comes to transient rest (until next disturbance). It can

also be thought of as a package of sediment made significantly more active due to local

mounding and exposure, say during a tree throw, which results in rapid flux compared

to what would happen under mean slope conditions. As discussed in the introduction,

many processes generate slope-dependent transport and operate over a wide range of

distances. These processes may result in a heavy-tailed PDF of the sediment “hops”

or displacement distance [see also 72], which means that there is a relatively small but

significant possibility that sediment grains will move a great distance downslope in a
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single hop. In other words, these distances do not have a characteristic length scale and

may assume values comparable to the size of the hillslope itself.

If the PDF of hopping distances were thin-tailed, e.g., Gaussian or exponential

with an e-folding distance small relative to the size of the hillslope, then the continuum

equation describing the evolution of the hillslope would be the diffusion equation [20, 3].

However, if the probability distribution of hopping distances is broad tailed as argued

above, then a faster than linear diffusion is expected. It turns out that, since a sum of

broad-tailed pdfs results in an a stable distribution for the hopping process [20], then the

governing equation of elevation change consistent with this distribution is the fractional

diffusion equation (3.9) [21, 79, 3]. That is, the corresponding macroscopic process of

sediment transport can be described using a modified diffusion equation where the ∇2

operator is replaced with a nonlocal operator ∇α. The degree of nonlocality is governed

by the order of differentiation, α. The lower the value of α, the greater is the degree of

non-locality. This is a manifestation of the fact that an α-stable PDF has a heavier tail

for lower values of α.

3.7 Locality and Scale Dependence of Computed Flux

In this section we discuss some preliminary ideas related to the potential of nonlocal

transport laws to circumvent the problem of scale dependence of sediment flux compu-

tations. We start with the classical divergence theorem and elementary control volume

which is of little use when there is no characteristic scale in particle displacement dis-

tances. Then, we allude to the fact that local transport laws suffer from scale depen-

dencies which would require closures [see, e.g., 98] and which can be naturally taken

care of by the nonlocal transport laws.

The advection-dispersion equation (ADE) is based on the classical definition of di-

vergence of a vector field. The divergence is defined as the ratio of total flux through

a closed surface to the volume enclosed by the surface when the volume shrinks to zero

[e.g., 18](see also [1] for an exposition relevant to subsurface transport):

∇.qs = lim
V →0

1

V

∫∫

S

qs.ηdS (3.24)

where qs is a vector field, V is an arbitrary volume enclosed by surface S, and η is a
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unit normal vector. Implicit in this equation is that the limit of the integral exists; that

is, the vector qs exists and is smooth as V → 0.

The classical notion of divergence maintains that, as an arbitrary control volume

V shrinks to zero, the ratio of total surface flux to volume must converge to a sin-

gle value. However, when a heavy-tailed distribution of displacement lengths exists,

this notion of convergence is challenged. In fact, due to the lack of a characteristic

scale of the displacement distances, no convergence is guaranteed when the size of the

control volume changes. As a result, the classical diffusion equation is no longer self-

contained with a closed form solution at all scales. To adopt the classical theory, the

best approximation that can be done is to assume that the total flux to volume ratio

can be assumed piecewise constant within small ranges of scales, allowing one to talk

about an “effective” scale-dependent dispersion coefficient [see, e.g., 1]. Several tech-

niques have been proposed in the subsurface transport literature to tackle the problem

of scale-dependent dispersivity. These vary from small perturbation approaches and

effective parameterizations [e.g., 99, 100], to power law dependence of D on scale [e.g.,

101], to volume statistical averaging [e.g., 77, 78] and to fractional advection-dispersion

equations (fADE) [e.g., 1, 102, 103, 80, 3].

Any sediment transport law that directly involves a “local” gradient or curvature in

the computation of flux, will be scale dependent as gradients and curvatures depend on

the scale at which they are computed [see, e.g., 9]. For example, this was demonstrated

by Passalacqua et al. [98] using a local nonlinear flux law (a Langevin model which has

square dependence on local slope). In that study, the development of a closure term,

akin to the Large Eddy Simulation (LES) turbulence closures, was proposed to handle

this scale dependence and the closure term was shown to have a power law dependence

on scale (grid size). The proposed nonlocal fractional diffusive model has in principle the

ability to remove this scale dependency as it is free of any “representative” or “control

volume” concept and the power law integration of local gradients (see equation (3.21))

eliminates the need for the aforementioned power law closure [see, e.g., 19]. This issue

requires further study.
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3.8 Discussion and Conclusions

Most geomorphic transport laws proposed to date are local in character; that is, they

express the sediment flux or erosion at a point as a function of the elevation gradient,

contributing drainage area, or other geomorphic quantities at that point only. For the

case of soil-mantled landscapes, it is reasonable to propose that disturbance processes

inducing transport have widely varying transport distances and this gives rise to a non-

locality of sediment transport, as proposed here. As summarized below, we see several

advantages to the nonlocal transport law.

1. The proposed nonlocal transport model with boundary conditions of zero slope at

the ridgetop and constant elevation at the ridge bottom predicts a steady state

profile which is parabolic very close to the ridgetop and changes, after a short

distance downslope to a power law with exponent equal to the parameter α (order

of differentiation) in the fractional transport law. This prediction is supported by

data in three study sites and provides useful insight for one of the sites which may

still experience transition from net erosion to soil accumulation.

2. The non-local linear model gives rise to a non-linear relationship between the

sediment flux at a point and the local slope. Hence, non-locality of sediment flux

is an alternative hypothesis that can explain the observed hillslope profiles and

the nonlinear flux dependence on slope.

3. In a practical implementation of a local sediment flux law (linear or nonlinear), the

“local” slope is always assigned a “scale” over which some smoothing or averaging

is done, without however a theory as to how to select this scale. The nonlocal flux

law is scale free (it lacks a characteristic scale of upstream particle displacement

distance); rather it uses a “power law weighted average slope” stating that upslope

hillslope gradients matter to local flux, but with diminishing influence as a function

of upslope distance.

4. The proposed nonlocal model produces significant variability of sediment flux

for a given local slope, as it explicitly takes into account variations in upslope

topography. In this case, transport parameters, such as K∗, can remain constant,
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and retain, perhaps, a stronger physical meaning while reproducing the variability

observed in real hillslopes.

5. The nonlocal model has the potential to eliminate scale dependency. The useful-

ness of nonlocal fractional models to address issues of scale dependence in subsur-

face transport (e.g., scale-dependent dispersivity in porous media with multiple

scales of heterogeneity) has been amply demonstrated and needs to be explored

for similar problems on the Earth’s surface.



Chapter 4

A sub-grid scale closure for

nonlinear hillslope sediment

transport models

4.1 Introduction

The generation and movement of sediment on hillslopes has been the subject of continu-

ous theoretical and field work since the pioneering conceptualizations of Gilbert [104, 74]

and the mathematical formalisms introduced later by Culling [32, 33, 34]. Culling [33]

proposed that the magnitude of the average rate of downslope sediment flux depends

linearly on the magnitude of the local gradient:

qs,L = KL|∇z| (4.1)

where qs,L is the volumetric sediment transport rate per unit contour length, z is local

hillslope elevation, |∇z| is the magnitude of the local hillslope gradient, and KL is

the proportionality constant (a diffusion-like coefficient) which depends on climate and

material. The value of KL has been estimated from a variety of approaches including

field and experimental tests (e.g., see [105] and [106] for reviews) and process-specific

derived models [e.g., 107, 108, 109]. Excellent reviews and further references can be

found in [17] and [110].

50
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The linear slope-dependent sediment transport model of equation (4.1) has been

found inadequate to explain the observed sediment flux on steep slopes (slopes in excess

of 20%) and nonlinear sediment transport models have been proposed [e.g., 111, 112,

113, 114, 115, 35, 116, 117, 73, 7, 108]. A nonlinear sediment transport model widely

used is of the form:

qs =
K|∇z|

1 − (|∇z|/Sc)
2 (4.2)

where qs is the magnitude of the nonlinear sediment flux, K is a diffusivity, and Sc

is the so-called critical gradient. The above equation has been derived from different

assumptions and theories and has been verified by field and experimental studies [35,

7, 118, 70]. From equation (4.2) one observes that at small gradients, the nonlinear

flux model imitates linear diffusive transport. However, as local gradients approach a

critical threshold gradient (Sc), the nonlinear flux model depicts an accelerated diffusion

on hillslopes and the magnitude of the nonlinear sediment flux approaches infinity. The

diffusivity and the critical gradient (K and Sc) are calibrated parameters [e.g., 7, 30].

Both equations (4.1) and (4.2) use the magnitude of the local gradient at every pixel to

compute the sediment flux at that location. We will call both these transport models

as “local”, linear and nonlinear, respectively. The local sediment transport models

inherently assume the existence of a representative elementary volume (that incorporates

the heterogeneities of the landscape) where the model can be applied.

Recently, a new approach has emerged motivated by the observation that the scales

of transport or particle displacement on hillslopes span a wide range as a result of

very heterogeneous disturbance processes (such as gopher mounds, rain splash, wood

blockage, tree throw, etc) [11, 119]. Thus, there is no separation between the scales

of transport and the scale of the system itself, putting in question the standard local

gradient theory formulations [e.g., see review in 2]. Non-local theories of sediment

transport on hillslopes have been proposed using discrete particle-based models [72] or

a fractional diffusion continuum formulation [11]. The continuum non-local model takes

the general form:

q⋆
s(x) = K⋆

∫ x

0
g(l)|∂z(x − l)

∂x
|dl (4.3)

where q⋆
s is the magnitude of the non-local flux, K⋆ is the measure of the diffusivity, g(l)

is a weighting function which takes into account the upslope history of the system, and
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x is the distance from the ridgetop along the hillslope flow path. When the weighting

function takes a power-law form, g(l) ∼ l1−α where 1 < α ≤ 2, then the above equation

can be cast into a fractional diffusive flux model for sediment transport on hillslopes

[11]. The non-local transport models are inherently scale-free and do not assume the

existence of a representative elementary volume.

It has been discussed in the literature that the computation of local gradients and

many of the geomorphic and hydrologic quantities (e.g., width function, channel initia-

tion threshold, topographic index, etc.) of a catchment are strongly dependent on the

resolution of the digital elevation models (DEMs) used [e.g., 120, 121, 122, 123, 124,

125, 126, 17, 127, 98, 128, 19] and even on the gridding methods used in building the

DEM [e.g., 129, 130]. Hence, any local sediment transport model (linear or nonlinear)

that is a function of the local gradients will be scale-dependent. For example, using 90

m or 30 m DEMs will result in different local gradients than those computed from a 1

m DEM. How then is the scale-dependence of gradients to be handled in computing the

sediment flux from equations (4.1) or (4.2)? One can argue that this can be handled

by appropriate calibration of the flux equation to local data to yield an effective (scale-

dependent) parameter K [117]. This is unsatisfying in the long-run as this parameter

loses its physical meaning. At the same time both equations (4.1) and (4.2) physically

apply at some scale that is assumed to the representative elementary control volume for

the application of the local sediment transport models (e.g., determined to be the scale

which averages over biotic processes [131]). For example equation (4.2) has been derived

from ballistic particle transport considerations [35] or from the balance of frictional and

gravitational forces at a scale below which topography is dominated by biotic processes

[7, 131]. Thus, in principle if equations (4.1) and (4.2) were to be applied at length scales

greater than the scale of the pre-defined representative elementary volume, new mean

field equations would need to be derived via upscaling. These mean field equations will

not only involve the same model formulation evaluated at the larger scale, but would

also involve additional terms which take into account the variability that lies within the

scale of application. The additional terms are called the sub-grid scale closure terms

as they account for the sub-grid variability of the landscape and need to be taken into

account while applying flux models at larger scales. In simple words, applying flux

models at a larger scale would not simply involve keeping the model equation intact



53

and tuning the parameter K, but it would instead involve the addition of a closure term

to incorporate the variability of gradients within the scale of averaging.

The scope of this study is to put forward in a formal way the scale-dependence

of the local, nonlinear sediment flux models (Section 4.2), and to derive the closure

term for the nonlinear sediment flux model of equation (4.2) (Section 4.3). The pa-

rameterization and the applicability of the proposed sub-grid scale closure model are

discussed in Sections 4.4 and 4.5, respectively. Finally, we present preliminary analysis

that points in the direction that the non-local transport model of equation (4.3) can

be scale-independent (Section 4.6). To demonstrate the above concepts we use the 2

m lidar topography of a small basin within the Oregon Coast Range. Conclusions and

recommendations for further work are given in Section 4.7.

4.2 Scale-dependence of local nonlinear transport models

In this section we demonstrate via an example the scale-dependence of the magnitudes

of local gradients and the computed sediment flux using DEMs at different resolutions.

We used lidar data from a small watershed (MR1) within the Oregon Coast Range,

near Coos Bay, Oregon, collected at a resolution of approximately 2 m (see Figure 4.1).

Details about this site can be found in [7].

Computation of local gradients and curvatures at different scales requires a “smooth-

ing” and a corresponding “differencing” filtering of the landscapes. The simplest smooth-

ing filter is the arithmetic averaging in which local gradients and curvatures are the first

and second order differences of the smoothed landscape at the corresponding scale. A

much more efficient way of implementing both the smoothing and differencing filtering

in a single operation is the wavelet-based methodology proposed by Lashermes et al.

[9]. A nonlinear filtering framework for smoothing landscapes that enhances the ge-

omorphic features present in the landscape was proposed by Passalacqua et al. [132]

(comparison of the performance of the nonlinear filtering framework and the wavelet-

based methodology was shown in [133]). To be consistent with the upscaling framework

used here to derive the sub-grid scale closure (Section 4.3), a simple moving averaging

of the landscape in boxes of size ∆ × ∆ m2 has been used as the smoothing filter and

first and second order differencing operations have been performed to compute the local
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MR1

Figure 4.1: High resolution topographic data of a 2.8 km2 area in the Oregon Coast
Range near Coos Bay, Oregon. The MR1 basin used in this study to demonstrate the
scale-dependence of nonlinear hillslope flux model is indicated. The resolution of the
data is approximately 2 m.

gradients and curvatures at that scale ∆. The results reported here are not sensitive

to the choice of the smoothing and differencing filter and similar results were obtained

using the wavelet-based methodology.

To evaluate the sediment flux qs from the hillslope pixels of the study site, one

needs to first remove the pixels corresponding to the fluvial or channelized parts of the

landscape. For this purpose we use the methodology proposed in [9] that is based on

the curvature quantile-quantile plot, where any pixel with curvature above a critical

threshold value (equal to the curvature value corresponding to the standard normal de-

viate of 1), which inherently emerges from this quantile plot, corresponds to channelized

parts of the landscape (as discussed in [132] these pixels correspond to the pixels around

the centerline of the channels). Figure 4.2(b) displays the quantile-quantile plot of the
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curvatures and determines the threshold value of 0.1 as the one that delineates hillslope

pixels from valleys and channels. Excluding all the pixels for which ∇2z > 0.1 yields

the pixels of the study site over which the nonlinear hillslope sediment flux model of

equation (4.2) was applied (see Figure 4.2(c)). The model parameters used for the com-

putation of the nonlinear sediment flux from the MR1 basin were K = 0.0032 m2/yr

and Sc = 1.25 (see Table 1 in [7] for calibrated values of the parameters for the Oregon

Coast Range). The scales over which the above computations were performed ranged

from 2 m (resolution of the data) to 30 m (which is the measure of the length scale of

hillslopes obtained from the wavelength corresponding to the scaling break in the power

spectral density of lateral elevation transects, taken perpendicular to the trunk stream,

of the MR1 basin shown in Figure 4.2(d)). For scales larger than 30 m, valley-forming

processes dominate the landscape that would require a different transport model.

For the hillslope pixels of the MR1 basin, Figure 4.3(a) shows the probability density

function (pdf) of the magnitude of the local gradients at different scales ∆. It is observed

that the pdfs change with scale not only in shape but also in terms of the mean value

|∇z|. Figure 4.3(b) shows the numerically evaluated pdf of qs, f(qs), using equation (4.2)

on the hillslope pixels of MR1 and for scales ∆ = 2, 10 and 30 m. To gain more insight

into how the pdf of slopes projects via the nonlinear relationship (4.2) into the pdf of

sediment fluxes qs we show in Figure 4.4 a detailed example of the numerical evaluation

for ∆ = 2 m. It is observed from Figure 4.4 that the nonlinear shape of the qs vs |∇z|
relationship changes the shape of the pdf of |∇z| to a more skewed pdf for qs (since

high values of |∇z| produce disproportionately large amount of sediment flux). This

change of shape of the pdf via the transformation of |∇z| to qs implies that plugging

the average local gradient value into equation (4.2) at a given scale will not result in

a good approximation for the average sediment flux at that scale (in fact, it severely

underestimates the average sediment flux). This is because the nonlinear relationship

in equation (4.2) implies that N(x) 6= N(x̄) (where N(·) is some nonlinear function of

x), that is:

qs =
K|∇z|

1 − (|∇z|/Sc)
2 6= K|∇z|

1 −
(
|∇z|/Sc

)2 (4.4)

where the overbar indicates the expected value of the quantity. To get a better ap-

proximation of the average flux qs at scale ∆ one needs to consider not only the mean
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Figure 4.2: (A) Curvature map of the MR1 basin with the 2 m contour lines overlaid.
(B) Quantile-quantile plot of the Laplacian curvatures in the MR1 basin. The deviation
of the positive curvature from normality (a straight line in this plot) can be used to
identify the channelized pixels as shown by Lashermes et al. [9]. The threshold on
curvature for delineating the channelized pixels was found to be ≃ 0.1. (C) Extracted
likely channelized pixels of the MR1 basin (marked in red) using the curvature threshold
of 0.1. The computation of the nonlinear hillslope sediment flux was performed on all
the pixels of the MR1 basin except for the ones marked in red. (D) Power spectral
density of the lateral elevation transects (taken perpendicular to the trunk stream every
2 m) of the MR1 basin. The change in the scaling regime of the power spectral density
marks the length scale of hillslopes here considered approximately 30 m as shown with
the vertical broken line. The inset plot shows an example elevation transect of the MR1
basin.
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value of the local gradients within a box of size ∆ × ∆ but also their variability. On

the contrary, the average flux qs,L for the linear local relationship (4.1) can be exactly

computed by evaluating equation (4.1) at the box-average slope. This is because for

linear relationships: L(x) = L(x̄). In the next section, we derive the sub-grid scale

closure for the nonlinear flux model of equation (4.2).
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Figure 4.3: Change of probability density functions of (a) the magnitude of local gradi-
ents and (b) the magnitude of the nonlinear sediment flux (equation (4.2)) with scale ∆
computed at the hillslope pixels in the MR1 basin (see Figure 4.4 for further discussion).
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4.3 Derivation of closure for the local nonlinear transport

model

The motivation for deriving the sub-grid scale flux for the nonlinear transport model

of equation (4.2) is two-fold. Firstly, DEMs at the resolution of 1 m or 2 m are often

unavailable thus forcing the application of the flux models at larger scales. Secondly,

even when the high-resolution DEMs are available, the local gradients are computed at

scales larger than 1 m to ensure robustness, remove noise, and to average over some

stochastic processes such as biotic processes, frost action, etc., that shape the hillslope.

Thus, the chosen scale for this computation often introduces unforeseen scale-dependent

effects in the computation of sediment flux.

Figure 4.4: Using the nonlinear flux model of (4.2), we evaluate how the probability
distribution of local slopes |∇z| projects into a (derived) probability distribution of
sediment flux qs. We note that the nonlinearity of the functional relationship between
|∇z| and qs implies that qs (|∇z|) 6= qs

(
|∇z|

)
. That is, computing the flux in a box of

size ∆×∆ using the box-average gradient in the nonlinear flux model, qs
(
|∇z|

)
, is not

the same as the arithmetic average of the sub-pixel fluxes qs (|∇z|). This is due to the
nonlinear relationship and the variability of gradients within the box of size ∆×∆. The
values of the parameters used here are K = 0.0032 m2/yr and Sc = 1.25 as reported in
[7].
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Consider the nonlinear sediment flux model of equation (4.2). For simplicity of

notation, let us denote by S the absolute value of slopes |∇z| at the smallest scale, i.e.,

the scale for which the model of equation (4.2) is theoretically derived. One can write

the nonlinear flux model of equation (4.2) using Taylor series expansion as:

qs = KS

(
1 +

(
S

Sc

)2

+

(
S

Sc

)4

+ · · ·
)

(4.5)

Since the local slopes are smaller than the critical gradient Sc, the ratio of S to Sc is

always less than one and we can neglect the fourth and higher order terms in the series

expansion as the contribution to the sediment flux from those terms is negligible (see

Section 4.5 for a discussion of the effect of Taylor series approximation on the computed

sediment flux). This simplification yields a simple polynomial relation of sediment flux

which involves the first and the third powers of the local slope given by:

qs ≃ KS +
K

S2
c

S3 (4.6)

The computed sediment flux using equation (4.6) from all the hillslope pixels of the MR1

basin shows a strong dependence on scale, as seen from Figure 4.5 (open circles). The

parameters of the nonlinear model used for the computation were K = 0.0032 m2/yr

and Sc = 1.25 [7]. Starting with equation (4.6), which applies at some pre-defined scale

of the representative elementary volume, we derive the sub-grid scale closure, i.e., the

term that needs to be added to this equation to account for the variability of local

slopes within a box of size ∆ × ∆. We approach this derivation from two different

viewpoints: (a) a physical consideration of upscaling the flux to derive a new mean field

equation at larger scales, and (b) a statistical viewpoint where upscaling is considered

as taking an expectation of the probability distributions of slopes at a given scale.

4.3.1 Subgrid scale closure: Physical viewpoint

Let us denote the upscaled flux at a given scale ∆ as q̃s∆
. This flux can be computed

by a filtering or upscaling of the right hand side of equation (4.6) as:

q̃s∆
≃

˜
KS +

K

S2
c

S3 (4.7)
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At every pixel of the landscape, the magnitude of the gradient, S, can be decomposed

into its filtered component at scale ∆, S̃∆, and its fluctuation around the filtered com-

ponent, S′
∆, i.e., S = S̃∆ + S′

∆. This operation is akin to the Reynolds decomposition

or the Large Eddy Simulation approach used extensively in modeling turbulence [e.g.,

134, 135, 136, 137, 138, 139, 140, 141, 142, 98].

Replacing in equation (4.7) the local slopes, S, by the sum of their filtered com-

ponents, S̃∆, and their fluctuations, S′
∆, and expanding the right hand side results in:

q̃s∆
≃ KS̃∆ +

K

S2
c

(
(S̃∆)3 + S̃′

∆
3 + 3S̃∆S̃

′
∆

2 + 3S̃′
∆(S̃∆)2

)
(4.8)

Noting that S̃′
∆ = 0 at any scale ∆ (i.e., the average of the fluctuations around the

mean is zero) the above equation after rearrangement simplifies to:

q̃s∆
≃ KS̃∆ +

K

S2
c

(S̃∆)3 +
K

S2
c

(
3S̃∆S̃′

∆
2 + S̃′

∆
3

)
(4.9)

By comparing equation (4.6) with the filtered equation (4.9), it is observed that they

have the same form except for the additional term in the right hand side of equa-

tion (4.9). This term is the so-called sub-grid scale closure which needs to be added to

the flux model of equation (4.6) if one uses the filtered slope, S̃∆, instead of the local

slope S in equation (4.7) to guarantee scale-independence. The terms S̃′
∆

2 and S̃′
∆

3 in

the closure represent the second and the third central moments of the slope fluctuations

at the given scale ∆. Depending on the statistical nature of the landscape, the contri-

butions of the second-order term (which contains S̃′
∆

2) and the third-order term (which

contains S̃′
∆

3) will vary. Our goal is to demonstrate the effect that the variability of

the slope fluctuations has on the computed sediment flux at different scales. Thus, we

neglect the third order moment in the closure term and approximate the sub-grid scale

closure term as:

σsg(∆) ≃ 3K

S2
c

S̃∆V ar(S
′
∆) (4.10)

where σsg(∆) denotes the sub-grid scale flux at a scale ∆, and V ar (S′
∆) = S̃′

∆
2 denotes

the variance of slope fluctuations within a box of size ∆×∆. From a geometrical point of

view, smoothing the landscape is equivalent to piecewise linearization of the landscape in

boxes of size ∆×∆ m2 (i.e., fitting a plane to the landscape in boxes of size ∆×∆). The

normalized slope fluctuations S′
∆ are a measure of the local curvature of the landscape.
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Thus, the derived sub-grid scale closure, which is dependent on the slope fluctuations

at that scale, S′
∆, accounts for the deviation from the linearization approximation of

smoothing (or the deviation of the landscape shape from the fitted plane in boxes of size

∆ × ∆). The nature of the sub-grid scale flux and its parameterization are discussed

in section 4.4. In the next subsection 4.3.2 we derive the sub-grid scale flux from a

statistical viewpoint.

4.3.2 Subgrid scale closure: Statistical viewpoint

Since the upscaling filter using arithmetic averaging is a linear operator, equation (4.7)

can be broken down as:

q̃s∆
≃ KS̃∆ +

K

S2
c

S̃3
∆ (4.11)

i.e., the sum of a linear and a nonlinear term: qs = L(S) +N(S). The nonlinear term

involves the filtering of the third power of S which is not the same as the third power

of the filtered term, i.e., S̃3
∆ 6=

(
S̃∆

)3
. The nonlinear term S̃3

∆ in the right hand side of

equation (6.4) can be written in terms of the slopes at the resolved scale S̃∆ using the

Taylor expansion which is given by:

Ñ(S) = N(S̃∆) +
N

′′

(S̃∆)

2
V ar(S′

∆) + . . . =
K

S2
c

(S̃∆)3 +
3K

S2
c

S̃∆V ar(S
′
∆) + . . . (4.12)

Neglecting the higher order terms in equation (5.29) and substituting it in equation (6.4)

the sub-grid scale closure, which is given by σsg = Ñ(S)−N(S̃), is the same as that in

section 4.3.1 (equation (4.10)).

4.4 Parameterization of the sub-grid scale flux

The sub-grid scale flux (equation (4.10)) is dependent on the filtered components of

the slopes at the given scale ∆, S̃∆, the variance of the slope fluctuations S′
∆ within

boxes of scale ∆, V ar (S′
∆), and the parameters of the nonlinear flux model, namely,

K and Sc. The filtered components of the slopes, S̃∆, were computed through a simple

moving averaging filter (as detailed in Section 4.2) and the slope fluctuations were then

determined by taking the differences of the filtered slopes and the slopes computed at

the finest resolution of the landscape. By performing this computation over a range
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of scales ∆, we gained access to the variance of the slope fluctuations and how this

variance changes across the landscape. For a given scale ∆, the sub-grid scale variance

V ar (S′
∆) depends on the location of the box of size ∆×∆ within the landscape. When

high-resolution data are available, say at a scale of 1 m or 2 m, then the sub-grid scale

closure term can be computed locally for each box of size ∆ × ∆ m2 by estimating the

variance of slope fluctuations within each box (V ar (S′
∆)). The resulting sub-grid scale

closure, which corrects for the sub-grid scale variability of slopes specific to each ∆×∆

box, is referred to here as the local sub-grid scale closure. Figure 4.5 (solid black circles)

shows the sediment flux computed using the nonlinear flux model of equation (4.6) with

the proposed locally-computed sub-grid scale closure. Figure 4.5 demonstrates that

the proposed sub-grid scale term alleviates the scale-dependence that the nonlinear

flux model suffers from (see open circles in Figure 4.5). The largest scale to which

the computations were performed is equal to the scale of the hillslope, ∆ = 30 m (see

Figure 4.2(d)), as beyond this scale the landscape is shaped by valley-forming processes.

The variance of the slope fluctuations, V ar (S′
∆), within boxes of size ∆×∆ needed

in equation (4.10) requires data at scales smaller than ∆. In the absence of data at

resolution higher than ∆, this quantity is unknown and we need to parameterize it in

terms of the resolved quantities of the topographic data at scales larger than ∆ (say

2∆). This can be achieved by investigating the relationship between the variance of

slope fluctuations within a given scale and the scale ∆. This parameterization can be

done locally (for each pixel of the landscape) or globally for the whole landscape. In

global parameterization we use the spatially averaged variance of slope fluctuations over

the whole landscape (〈V ar (S′
∆)〉) as a first-order estimate of V ar (S′

∆) for each pixel

at the given scale ∆. The standard error of this estimate for each pixel is quantified by

the standard deviation of the variance of slope fluctuations, which quantifies the pixel-

to-pixel variability of V ar (S′
∆) across the landscape. Figure 4.6 shows the functional

dependence of these two quantities (〈V ar (S′
∆)〉 and std (V ar (S′

∆))) on scale for the

hillslope pixels of the MR1 basin. A power-law relationship was found to provide a very

good approximation of the functional dependence of the first two central moments of

V ar (S′
∆) on scale, given by:

〈V ar
(
S′

∆

)
〉 ∼ ∆β (4.13a)
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Figure 4.5: Plot showing the percentage of the total sediment flux computed from the
hillslope pixels of MR1 basin that is retrieved at scales larger than ∆ = 2 m when
compared with the flux computed at scale ∆ = 2 m (q̃s∆

/qs). The open circles denote
the sediment flux computed using the nonlinear flux model of equation (4.6) and the
solid circles denote the sediment flux computed using the nonlinear flux model with
the proposed second-order closure (equation (4.10)). The black solid circles indicate
sub-grid scale closure term added locally for each box ∆×∆ across the landscape. The
solid red circles indicate the flux calculated using the sub-grid scale closure parameter-
ized using the global statistics of slope fluctuations across the basin. The shaded area
denotes the standard error (evaluated from equation (4.10) by replacing V ar (S′

∆) with
std (V ar (S′

λ∆))) in the estimate of the nonlinear flux with the global sub-grid scale
closure parameterization. The values of the parameters used were K = 0.0032 m2/yr
and Sc = 1.25 (same as the values calibrated in [7]).

std
(
V ar

(
S′

∆

))
∼ ∆γ (4.13b)

where 〈·〉 denotes the expectation operator and std(·) denotes the standard deviation of

the quantity in the parenthesis. This functional dependence provides us with a means of

parameterizing the sub-grid scale flux in terms of the known quantities of the landscape.

For instance, if one were attempting to compute the sediment flux from the nonlinear

flux model at a scale ∆, an averaging (or filtering) operation would need to be performed

on the DEM to compute the slopes at some larger scale λ∆ (λ > 1). Then the power law

form that has been established in Figure 4.6 can be invoked to estimate the exponents,
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β and γ, using:
〈V ar (S′

λ∆)〉
〈V ar

(
S′

∆

)
〉 = λβ (4.14a)

std (V ar (S′
λ∆))

std
(
V ar

(
S′

∆

)) = λγ (4.14b)

Once the power law exponents are estimated, the mean and standard deviation of the

variance of slope fluctuations at the scale of interest can be extrapolated by using

the computed mean and standard deviation of V ar(S′

λ∆). This operation provides

a “global” correction for the computed sediment flux over the whole landscape and

thus this sub-grid scale term computed using global statistics is referred to here as

the “global sub-grid scale closure”. This can be viewed as informing the flux model

with the information about the landscape statistics at higher scales to downscale the

variability to an unknown smaller scale. This is a common approach to sub-grid scale

parameterization in large-eddy simulation [e.g., 138] as well as in precipitation [e.g., 143]

and soil moisture [e.g., 144] applications. Practically, the implication of this result is

that if one were to have DEM data that is too coarse to get reasonable estimates of the

sediment flux (e.g., ASTER or SRTM data), then one can quantify the sub-grid scale

variance of the slope fluctuations within a given scale using the power-law relationships

shown in Figure 4.6 and arrive at a reasonable estimate of the sediment flux by applying

the sub-grid scale closure correction at each pixel of the landscape.

Figure 4.5 (solid red circles) shows the computed nonlinear sediment flux with the

proposed global sub-grid scale correction from all the hillslope pixels of the MR1 basin

(using the global average 〈V ar (S′
∆)〉 value instead of the box-specific values of V ar (S′

∆)

in equation (4.10)). The model parameters used were K = 0.0032 m2/yr and Sc =

1.25. As seen in Figure 4.5, the global subgrid-scale correction performs only slightly

worse than the local correction model even for scales larger than 20 m. In order to

explicitly account for the uncertainty introduced by substituting the local variance of

slope fluctuations by their spatially average value, the standard error of estimate was also

computed (using the standard deviation of the variance of slope fluctuations available

at any scale ∆ and the power-law relationship established in Figure 4.6 ). This standard

error of estimate is shown as the shaded area in Figure 4.5.
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Figure 4.6: Plot showing the functional dependence of the mean and standard deviation
of the variability of slope fluctuations, S′

∆, on scale ∆ in the MR1 basin. The power-
law dependence on scale of the first two moments of the variance of slope fluctuations
within the given scale, (V ar (S′

∆)), allows one to parameterize the sub-grid scale closure
of equation (4.10).

4.5 Applicability of the sub-grid scale closure model

As shown in Section 4.4, the proposed sub-grid scale closure model of equation (4.10),

when applied to the MR1 sub basin of the Oregon Coast Range, alleviates much of the

scale-dependence that the nonlinear hillslope sediment transport model suffers from.

The natural question that arises then is: how general is this result and what attributes

of a given landscape control the performance of the proposed sub-grid scale closure

model? Critical to the derivation of the sub-grid scale closure is the Taylor series

approximation of equation (4.2) and its truncation (neglecting the higher order terms

in equation (4.5)). The Taylor series expansion of equation (4.5) does not capture

the steep nonlinearity of the functional form of the nonlinear sediment flux model as

the average slope of a hillslope approaches the critical value of Sc (S/Sc → 1) and,

therefore, for such values of slopes equation (4.5) becomes an increasingly less accurate

approximation of equation (4.2) . Thus, this polynomial approximation of the nonlinear

sediment transport model would have a direct effect on the performance of the proposed

sub-grid scale closure model. In this section, we will explore the applicability of the
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proposed sub-grid scale closure model to real landscapes and highlight the primary

physical controls on the accuracy of the proposed model.

Morphologic characteristics of hillslopes (e.g., average slope, hillslope relief) are

known to depend on the interplay between tectonic forcings and the climate-dependent

erosional processes, and several studies have quantified the dependence of different mea-

sures of topographic inclination on denudation rates (see [5] and references therein). To

study the linkage between the hillslope morphology and denudation, one can combine

the nonlinear sediment flux model with the one-dimensional, continuity equation given

by:

ρs
∂z

∂t
= −ρs

∂qs
∂x

+ ρrU (4.15)

where qs is the nonlinear sediment flux, U is the rock uplift rate, t is time, x is the

horizontal hillslope distance, and ρr and ρs are densities of rock and soil, respectively.

Under the assumption of steady-state denudation ∂z/∂t → 0 (where the rate of bedrock

erosion, E, is equal to the rate of rock uplift, U), Roering et al. [5] derived the one-

dimensional, functional forms of the magnitude of local gradient (S = |∂z/∂x|) and

hillslope elevation profiles predicted by the nonlinear sediment flux model in terms of

the transport parameters (K and Sc), erosion rate (E), and material properties (ρr and

ρs). Further, they showed that in dimensionless form, the magnitudes of local gradients

(S∗) and the hillslope relief (R∗) can be expressed as [5]:

S∗ =
S

Sc
=

1

(E∗x∗)

(
1 −

√
1 + (E∗x∗)2

)
(4.16a)

R∗ =
S

Sc
=

1

(E∗)

(√
1 + (E∗)2 − ln

(
1

2

(
1 +

√
1 + (E∗)2

))
− 1

)
(4.16b)

where E∗ and x∗ are independent dimensionless variables, and S is the average slope of

the hillslope. The expressions for the dimensionless hillslope distance and dimensionless

erosion rate were given by:

x∗ =
x

LH
(4.17a)

E∗ =
E

ER
(4.17b)

where LH is the hillslope length (measured horizontally from the hilltop to the channel

margin) and ER is a reference erosion rate given by ER = KSc/ (2LH (ρr/ρs)). As
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seen from the above equations, the average slope and dimensionless hillslope relief of a

hillslope are primarily controlled by the dimensionless erosion rate, E∗.

To quantify the accuracy of the Taylor series approximation of the nonlinear hillslope

sediment flux model, we evaluated the steady-state magnitudes of the local gradients

predicted by the nonlinear sediment flux model for various values of the dimension-

less erosion rates. We then computed the total sediment flux from the hillslope profiles

(whose magnitudes of local gradients are given by equation (4.16a)) using equations (4.2)

and (4.6). The accuracy of the Taylor series approximation of the nonlinear sediment

flux model can then be defined as the ratio of the total flux from the hillslope profile

computed using equation (4.6) to the total sediment flux computed using equation (4.2).

Figure 4.7 shows the functional dependence of the accuracy of the Taylor series approx-

imation of the nonlinear sediment flux model as a function of the dimensionless erosion

rate. The functional dependence of the dimensionless hillslope relief R∗ on the dimen-

sionless erosion rate E∗ is also shown in this plot. As seen in Figure 4.7, the accuracy

of the Taylor series approximation and thus the proposed sub-grid scale closure model

reduces with an increase in the dimensionless erosion rate. For values of E∗ > 10, the

decrease in the accuracy of the Taylor series approximation of the nonlinear sediment

flux is significant, as the polynomial approximation of the nonlinear sediment flux model

does not capture the threshold behavior of the nonlinear sediment flux model (i.e., the

sediment flux does not approach infinity, as the local slope approaches the critical value

of Sc). This observation is a manifestation of the fact that hillslope profiles become

increasingly planar with an increase in the dimensionless erosion rate and their average

slope approaches the critical threshold value (S → Sc). Thus, the ratio of S to Sc

approaches a value of 1 for higher values of E∗ (see Figure 4.7) and the Taylor series

approximation (given by equation (4.6)) does not adequately describe the nonlinear sed-

iment flux model of equation (4.2). This result has a direct effect on the performance

of the proposed sub-grid scale closure, as the derivation of the closure is built upon the

polynomial approximation of the nonlinear sediment flux model of equation (4.2).

The reported values of the dimensionless variables for the Oregon Coast Range (of

which MR1 is a sub basin) were E∗ ∼ 6.33 and R∗ ∼ 0.64 [5] and thus, from the the-

oretical relation in Figure 4.7, we note that the Taylor series approximation provides

an adequate representation of the nonlinear sediment flux model of equation (4.2) for
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this basin. This results in the good performance of the proposed sub-grid scale closure

model as shown in Section 4.4. We plotted the dimensionless erosion rates and the

dimensionless relief from the Oregon Coast Range, Gabilan Mesa (see Table 1 from [5]),

and several catchments of the San Gabriel mountains (calculated from Table 1 of [10])

in Figure 4.7. The dimensionless relief for the catchments in San Gabriel mountains

were computed (equation (4.16a)) using the values of average slope (S) and the mag-

nitude of the critical gradient (Sc) and the dimensionless erosion rates were computed

(equation (4.17b)) using the reported values of the erosion rates (E), K, Sc, LH , ρr and

ρs in Table 1 of [10]. As seen in Figure 4.7, the Oregon Coast Range, Gabilan Mesa and

some catchments of the San Gabriel Mountains have a low dimensionless erosion rate

(E∗ < 10), which enables one to apply the proposed sub-grid scale closure model to these

field sites. We conclude that both the dimensionless erosion rate and the dimensionless

hillslope relief are non-parametric measures of the accuracy of the proposed sub-grid

scale closure and can be used to determine whether the proposed closure provides an

accurate representation of the sub-grid scale fluxes for a given landscape.

4.6 Scale-independence of non-local flux model

In this section we put forth the hypothesis that the non-local sediment transport model is

scale-independent and test this hypothesis using an example computation on a hillslope

profile of the MR1 basin. The non-local flux model of equation (4.3) uses a linear

combination of slopes along the flow path on the hillslope. Unlike the nonlinear flux

model where the flux computation is performed at each pixel of the landscape, the

non-local flux model takes into account the magnitude of local gradients of the upslope

topography along the flow path. As shown in Foufoula-Georgiou et al. [11], when the

convolution kernel, g(l), in equation (4.3) takes a power-law form the non-local flux

model can be cast into a fractional derivative form, given by:

q⋆
s(x) = K⋆|∂

α−1z

∂xα−1
| (4.18)

where q⋆
s(x) is the magnitude of the non-local sediment flux, K⋆ is a diffusion-like

coefficient, ∂α−1/∂xα−1 denotes the fractional derivative operator and x is the distance

from the ridgetop along the flow path. The fractional derivative can be computed using
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Figure 4.7: Functional dependence of the accuracy of the Taylor series approximation
of the nonlinear sediment flux model on the dimensionless erosion rate, E∗ (bottom
panel). The accuracy of Taylor series approximation is defined as the ratio of the total
sediment flux computed from the predicted steady-state, equilibrium hillslope profile of
the nonlinear sediment transport model using equation (4.6) to that computed using
equation (4.2). The top panel (broken line) shows the theoretical relationship between
the dimensionless relief R∗ and the dimensionless erosion rate E∗ derived from the
nonlinear sediment flux model of equation (4.2). Data points from the Oregon Coast
Range, the Gabilan Mesa and several catchments from the San Gabriel mountains (as
reported in [5] and [10]) are also shown on this plot. The above plot can be used
to determine whether the proposed closure provides an accurate representation of the
sub-grid scale fluxes for a given landscape.
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the one-shift Grünwald expansion [91]:

∂α−1z(x)

∂xα−1
≃ 1

∆xα−1

N∑

k=0

gkz (x− k∆x+ ∆x) (4.19)

where gk are the one-shift Grünwald weights, ∆x is the spatial grid size in the numerical

evaluation, N is the number of node points upslope of the given point and ∂α−1/∂xα−1

is the fractional differentiation operator of order α − 1 (1 < α ≤ 2). The Grünwald

weights are given as [92, 91]:

gk =
Γ(k − α+ 1)

Γ(−α+ 1)Γ(k + 1)
(4.20)

where Γ(.) is the gamma function. It is readily observed from equations (4.18) and

(4.19) that computation of the non-local flux, q⋆
s(x), at a location x involves not only

the gradient at that location but also gradients upslope of that location.

One can write the fractional derivative operator on elevation in equation (4.18) as

a fractional integration on the slopes and thus the non-local flux model becomes:

q⋆
s(x) = K⋆I1−α

x (S) (4.21)

where I1−α
x (·) is a fractional integration operation of order 1 − α [90]. Filtering the

above equation yields the following relation:

q̃⋆
s∆

(x) = K⋆ ˜I1−α
x (S) (4.22)

In the above equation, we are performing an averaging of the fractional integral of

the slopes, S, which can be decomposed into the sum of their filtered components at

a given scale, S̃∆, and their fluctuations component, S′
∆. Noting that the fractional

integration is a linear operator, the above equation would amount to the sum of the

fractional integral of the filtered slope (S̃∆) and the fractional integral of the average

of the fluctuating component of the slopes (S′
∆). Noting that the latter term is zero

(S̃′
∆ = 0), equation (4.22) can be written as:

q̃⋆
s∆

(x) = K⋆I1−α
x

(
S̃∆

)
(4.23)

denoting that the filtered flux is equal to the value of the flux calculated by plugging the

value of the filtered slope in its original functional form of equation (4.21). This result
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demonstrates theoretically that the non-local sediment transport model of equation (4.3)

is scale-independent.

We investigate the scale-independence of the non-local transport model by comput-

ing the sediment flux on a hillslope profile of the MR1 basin at various scales. The

hillslope profile chosen was one from the MR1 basin (Figure 4.8(a)) that was reported

in [7] and later shown by Foufoula-Georgiou et al. [11] to be consistent with the steady-

state prediction from a non-local flux model. Figure 4.8(b) shows the total computed

sediment flux from this single hillslope profile using both the non-local flux model (equa-

tion (4.21)) and the nonlinear flux model (equation (4.2)). The parameters of the non-

linear model used were K = 0.0032 m2/yr and Sc = 1.25 and K⋆ was calibrated such

that the total computed sediment flux from the hillslope profile was equal for both the

models at the smallest scale (2 m). The value of α = 1.3 was chosen, which was es-

timated from the form of the hillslope profile in [11]. As shown in Figure 4.8(b), the

scale-dependence of the non-local flux model is minimal when compared with the non-

linear flux model. This difference, when added up over all the hillslope profiles of the

MR1 basin, amounts to considerable scale-dependence in the case of the nonlinear flux

model, whereas the negligible scale-dependence of the non-local flux model promises to

alleviate the issue of scale-dependence when applied to the whole of MR1 sub basin.

The above demonstration was performed on a single hillslope profile only rather

than on the whole MR1 basin, as done in Section 4.4. This is because, to the best of

our knowledge, the numerical implementation of fractional derivatives on a 2 −D field

along directed flow paths that possess a tree-like structure is not known. Testing the

scale-independence of the non-local flux model on a 2−D elevation field is the subject

of future research.

4.7 Conclusions

In this chapter, theoretical analysis and high-resolution lidar data were used to demon-

strate the scale-dependence of local nonlinear geomorphic transport models of sediment

transport on hillslopes. The following conclusions were drawn:

1. The magnitude of local gradients and consequently the computed sediment flux
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Figure 4.8: (A) Hillslope profile in the MR1 basin of the Coos Bay region. This profile
was reported in Roering et al. [7] and later shown by Foufoula-Georgiou et al. [11] to
be consistent with the fractional flux model with the parameter of α = 1.3. (B) Flux
computed at four different scales along a single profile of the MR1 basin in the Coos
bay region. As seen above the nonlinear flux model suffers from scale-dependence of the
total flux computed from the hillslope profile, whereas the non-local flux model shows
very little dependence on scale. The parameters used for the nonlinear flux model were
K = 0.0032 m2/yr and Sc = 1.25. The diffusivity of the fractional flux model, K⋆ was
calibrated such that the fluxes computed from non-local and nonlinear flux models are
equal at the smallest scale.
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from a local nonlinear sediment transport model were shown to be strongly de-

pendent on the scale at which the gradients were computed. A simple moving

averaging method was used for the purpose of smoothing the 2 m high-resolution

lidar data of the MR1 basin in the Oregon Coast Range to create landscapes at

lower resolutions. Other smoothing filters have been tested with little difference

in the results.

2. A sub-grid scale closure was derived via upscaling of the nonlinear sediment flux

model for sediment transport on hillslopes. It is noted that the local nonlinear

flux model inherently suffers from scale-dependence owing to the scale-dependent

nature of the local gradients and the nonlinear relationship of the sediment flux

and local gradients.

3. The proposed sub-grid scale closure that accounts for the variability at scales

smaller than the scale ∆ at which the model is applied was shown to depend on

the model parameters (diffusivity and critical gradient, K and Sc, respectively),

the filtered component of the local gradients (S̃∆), and the variance of the slope

fluctuations within the scale ∆ (V ar (S′
∆)). The mean and standard deviation of

the within-box (of scale ∆) variability of the slope fluctuations were shown to have

a power-law dependence on scale, thus enabling one to effectively parameterize

the unknown variability at a given scale by using statistical information of the

landscape from larger scales. It was shown that both the local sub-grid scale

closure (each box of scale ∆ has its own correction derived from its immediate

larger-scale neighborhood) and the global sub-grid scale closure (same closure

for all boxes based on the statistics of the whole landscape) alleviate the scale-

dependence that the nonlinear sediment flux model suffers from.

4. The accuracy of the proposed sub-grid scale model was shown to be directly related

to the dimensionless erosion rate (E∗) and the dimensionless hillslope relief (R∗)

of a given landscape. It was shown that for large value of the dimensionless erosion

rate (E∗ > 10 and S → Sc) the proposed sub-grid scale closure will not perform

well as the Taylor series approximation of the nonlinear sediment transport model,

on which the proposed sub-grid scale closure derivation relies, breaks down.
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5. Finally, the recently proposed non-local flux model for sediment transport on hill-

slopes [11] was shown theoretically to be scale-independent owing to its inherent

scale-free nature and the fact that it does not assume the existence of a repre-

sentative elementary control volume. It was demonstrated that the non-local flux

model shows negligible scale-dependence compared to the nonlinear flux model,

when applied to a single hillslope profile of the MR1 basin of the Oregon Coast

Range.

The conceptual framework for deriving the sub-grid scale closure presented in this

chapter (Section 4.3) is general and can be applied to any nonlinear sediment transport

model. The most notable examples in geomorphic transport are the stream power

model for bedrock erosion (ξ ∼ AmSn, where ξ is the rate of bedrock erosion, A is the

upstream drainage area and S is the local slope) and the bed load sediment transport

models (qbl ∼ τa, where qbl is the bed load sediment flux and τ is the instantaneous

shear stress at the bed). The investigation and derivation of the sub-grid scale closure

models for these nonlinear sediment transport models is a subject of future study.



Chapter 5

Normal and Anomalous Diffusion

of Gravel Tracer Particles in

Rivers

The stones that make up the bed of gravel-bed rivers are transported as bedload during

floods. During periods of overall transport, each particle undergoes alternating periods

of movement and rest. Movement consists of rolling, sliding or saltation, which continues

until a single step length of motion is completed. The particle is at rest when it is

deposited, either on the bed or deeper within the deposit. One way to study the

mechanism of bedload transport in gravel bed rivers is to seed the bed with marked

tracer particles within some small area of the bed (patch), and to follow the pattern of

migration and dispersal of particles from that patch [38, 145, 146, 39, 147, 148]. Tracers

provide a way of characterizing not only mean parameters pertaining to transport, but

also the stochasticity of particle motion itself.

This stochasticity was first elaborated by Einstein [149]. Einstein based his analysis

on experimental observations of painted tracer particles. He noted that: “The results

demonstrated clearly that even under the same experimental conditions stones having

essentially identical characteristics were transported to widely varying distances . . .

Consequently, it seemed reasonable to approach the subject of particle movement as

a probability problem.” Einstein considered a particle that moves in discrete steps

75
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punctuated by periods of inactivity. He quantified the problem in terms of the statistics

of step length and resting period (waiting time). Einstein [48] went on to explain how

these quantities enter into the delineation of macroscopic relations of bedload transport

(i.e., relations that represent averages over the stochasticity of sediment motion). More

specifically, Einstein [48] showed that the bedload transport rate is proportional to the

step length and inversely proportional to the resting period. Following the seminal work

of Einstein [48], many stochastic theories for sediment transport have been proposed

which account for the aforementioned stochasticity (see for example, [150, 151, 152, 153,

154, 155, 156, 157, 158], [159, 160]; [161]; [71],[162] and references therein).

Two macroscopic quantities that can be captured by means of statistical analyses

of tracer motion are the overall tendencies of ensembles of tracers to be advected down-

stream, and to disperse, or diffuse. (Various authors use the terms “dispersion” or

“diffusion” of tracers to describe the same process: here we rather arbitrarily use the

term “diffusion”.) Both advection and diffusion are governed by a wide range of factors.

Bedload particles may roll, slide or saltate over the bed. In the case of grains of

uniform size, mean saltation length may be on the order of ten diameters [163]; whereas

mean step length may be on the order of 100 grain diameters [164, 165, 166]. Einstein

[164] suggested that mean step length can be approximated as a constant multiple

of grain diameters, whereas Wong et al. [166] indicate a weak variation with Shields

number, which is a proxy for flow strength. Step length is known, however, to vary

stochastically [165]. As illustrated below, this stochasticity is one source of diffusion.

When a particle comes to rest, it may deposit so as to be exposed at the bed surface,

or it may become buried at depth [167]. From a statistical point of view, deeper burial

in general implies a longer resting time before exhumation and re-entrainment. This

effect can influence both diffusion and advection [147]. Most natural gravels consist of

a mixture of grain sizes, each of which undergoes steps and resting periods according

to size-specific probabilities. For example, Tsujimoto [165] has shown that larger grains

in a mixture have longer step lengths, but also longer resting times. As these different

sizes move downstream, their motion is affected by the presence of bedforms such as

dunes [168], bars and bends associated with channel meandering/braiding [148], and

large-scale variations in channel width. In addition, the bed may be undergoing aggra-

dation, which enhances the capture of bedload particles, or degradation, which causes
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the exhumation of grains that have undergone long-term storage [147]. Grains can also

enter floodplain storage for long periods of time, and then be exhumed as the channel

migrates into the relevant deposit [169, 170, 171]. Again, all these effects can influence

the advection/diffusion of tracer particles.

The macroscopic transport of grains undergoing steps and rest periods governed by

statistical laws can be most simply characterized in terms of the classical advection-

diffusion model, according to which the particles spread downstream with a constant

diffusivity. When step lengths and rest periods are governed by a multiplicity of mech-

anisms over a very wide range of spatial and temporal scales, however, the advec-

tion/diffusion of tracer particles may no longer be characterizable in terms of the classi-

cal model. It is widely known in the groundwater literature that a multiplicity of scales

over which transport takes place can lead to “anomalous diffusion”, for which the ad-

vection/diffusion equation can be characterized by fractional derivatives [1, 27, 22, 172].

Nikora et al. [40] have studied the diffusion of bedload particles using the measured

motion of individual particles in a canal as the basis for ensemble averaging. They

extracted from their data various moments characterizing particle location as a func-

tion of time. They delineated three ranges of temporal and spatial scales, each with

different regimes of diffusion: ballistic diffusion (at the scale of saltation length), nor-

mal/anomalous diffusion (at a scale of step length) and sub-diffusion (at global scale).

Their study thus represents a pioneering effort in the identification of anomalous diffu-

sion of bedload particles.

We develop here a theoretical model for the study of anomalous diffusion of tracer

particles moving as bedload. The present model is not intended to be comprehensive, in

that it covers only a restricted set of phenomena that might lead to anomalous diffusion.

It is our desire, however, that this first model should serve as an example illustrating

the pathway to more general models of anomalous diffusion.

The chapter is structured as follows. In Section 5.1, a straightforward formulation

of the Exner equation for sediment conservation is presented which incorporates the

probability density function (pdf) for step lengths, i.e., the distances traveled by par-

ticles once they are entrained to when they are deposited again on the river bed. In

Section 7.2 we show that the assumption of step lengths having a distribution with thin
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tails (e.g., exponential, normal, log-normal distributions) leads to a classical advection-

diffusion equation for tracer dispersal. However, in real rivers the complexity resulting

from broad distributions of particle sizes and flood events can lead to a heavy tail in

the pdf of step lengths (arising, for example, from the combination of an exponential

distribution for step length conditional on a particle size and a gamma distribution

of particle sizes). In Section 6.2, we show that this consideration leads to an anoma-

lous advection-diffusion formulation which includes fractional derivatives. That model

was introduced earlier in the context of other problems, such as groundwater disper-

sion. Section 5.4 shows how a heavy-tailed step length distribution can arise from a

thin-tailed (exponential) pdf of step length for particles of a given size, together with

a thin-tailed grain size distribution. In Section 6.4, we build a stochastic model to de-

scribe the time evolution of the relative concentration of the tracers in the active layer,

and show that the approximate solutions obtained in Sections 7.2 and 6.2 are long-time

asymptotic solutions of the derived model. Finally, in section 6.5, numerical results are

presented showing the difference between normal and anomalous advection-diffusion of

gravel tracer particles.

5.1 Formulation

The starting point for our analysis is the entrainment-based one-dimensional Exner

equation for sediment balance [165, 31, 173];

(1 − λp)
∂η(x, t)

∂t
= Db (x, t) − Eb (x, t) (5.1)

where η denotes local mean bed elevation, t denotes time, x denotes the downstream

co-ordinate, Db denotes the volume rate per unit area of deposition of bedload particles

onto the bed, Eb denotes the volume rate per unit area of entrainment of bed particles

into bedload, and λp is the porosity of bed sediment. We assume that, once entrained, a

particle undergoes a step with length r before depositing. We further assume that this

step length is probabilistic, with a probability density fs(r) (pdf of step length). The

deposition rate of tracers Db(x, t) is then given as:

Db (x, t) =

∫
∞

0
Eb (x− r, t) fs(r)dr (5.2)
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In the above formulation Eb is a macroscopically determined parameter, which can be

shown to vary inversely with the mean resting time of a particle. The formulation thus

includes the effect of stochasticity in step length, but not in resting time.

A model formulation for tracers that simplifies the above-mentioned model of en-

trainment and deposition is the active layer formulation. According to this formulation,

grains in an active bed layer of thickness La below the local mean bed surface exchange

directly with bedload grains. Grains below the active layer, i.e., grains in the sub-

strate, exchange with the active layer only by means of bed aggradation (when active

layer grains are transferred to the substrate) and degradation (when substrate grains

are transferred to the active layer). In such a model, substrate grains do not directly

exchange with the bedload grains.

Let fa(x, t) denote the fraction of tracer particles in the active layer at any location x

and time t. In addition, let fI(x, t) denote the fraction of tracer particles in the sediment

that is exchanged across the interface between the active layer and the substrate as the

bed aggrades or degrades. The equation of mass conservation of tracers can then be

written as:

(1 − λp)

(
fI(x, t)

∂η(x, t)

∂t
+ La

∂fa(x, t)

∂t

)

= DbT (x, t) − EbT (x, t)

(5.3)

where EbT denotes the volume entrainment rate of tracers and DbT denotes the corre-

sponding deposition rate, which are given as [31]:

EbT (x, t) = Eb(x, t)fa(x, t) (5.4)

and

DbT (x, t) =

∫
∞

0
Eb (x− r, t) fa (x− r, t) fs(r)dr (5.5)

Here we exclude the complication induced by bedforms such as dunes [e.g., 168] by

considering conditions of lower regime plane-bed transport, such as those investigated

by Wong et al. [166].

The fraction fI of tracers exchanged at the interface as the mean bed elevation

fluctuates can be expected to differ depending upon whether or not the bed is aggrading

or degrading. Hoey and Ferguson [174] and Toro-Escobar et al. [175] have suggested
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forms for interfacial exchange fractions which can be adapted to the problem of tracers.

Here we restrict consideration to the case for which the bed elevation is at equilibrium,

so that La, Eb, η and the pdf fs(r) are all constant in x and t. Under this condition,

equations (5.3), (5.4) and (5.5) reduce to:

(1 − λp)
La

Eb

∂fa(x, t)

∂t

=

∫
∞

0
fa (x− r, t) fs(r)dr − fa(x, t)

(5.6)

The nature of the pattern of tracer diffusion predicted by equation (5.6) depends on the

nature of the pdf fs(r) of step lengths. As shown in Sections 7.2 and 6.2, a thin-tailed

pdf, i.e., one for which all moments of fs(r) exist, leads to a classical Fickian advection-

diffusion equation, while a heavy-tailed pdf, i.e., one for which moments larger than a

given order do not exist, can lead to an anomalous advection-diffusion equation.

5.2 Tracer transport with thin-tailed step length distribu-

tion

In this section, we show that a thin-tailed pdf for the step length distribution, fs(r),

in equation (5.6) leads to a classical Fickian (normal) advection-diffusion equation. For

simplicity, we assume the porosity to be zero, i.e., λp = 0. The simplest way to solve

the integral equation (5.6) is to use Fourier transforms, since the convolution becomes

a product in Fourier space. The Fourier transform of a function fa(x, t) is given by:

f̂a(k, t) =

∫
∞

−∞

e−ikxfa(x, t) dx (5.7)

Taking the Fourier transforms in equation (5.6) and manipulating yields:

La

Eb

∂f̂a(k, t)

∂t
=
(
f̂s(k) − 1

)
f̂a(k, t) (5.8)

Expanding the Fourier transform of fs(r) as a Taylor series gives:

f̂s(k) = 1 − ikµ1 +
1

2
(ik)2 µ2 + · · · (5.9)

where µn =
∫
rnfs(r)dr denotes the nth order moment of the step length distribution.

The above expansion is valid provided that the moments µn exist and are finite, and the
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series converges uniformly in a neighborhood of k = 0 [176]. Substituting equation (5.9)

into (5.8) we obtain:

La

Eb

∂f̂a(k, t)

∂t
=

(
−ikµ1 +

1

2
(ik)2 µ2 + · · ·

)
f̂a(k, t) (5.10)

Recall that (ik)f̂a(k, t) is the Fourier transform of ∂fa(x, t)/∂x. By making the approx-

imation that higher order terms can be neglected (which will be shown equivalent, in

Section 6.4, to considering a long-time asymptotic solution), and by setting v = µ1 and

2Dd = µ2, it follows by an inverse Fourier transform that the function fa(x, t) is the

approximate solution to the advection-diffusion equation:

La

Eb

∂fa

∂t
= −v∂fa

∂x
+Dd

∂2fa

∂x2
(5.11)

This is the standard form of the advection-diffusion equation for tracer dispersal, and

applies under equilibrium bedload conditions where v and Dd can be considered con-

stant. The associated Green’s function, i.e., the solution to the above equation with

a pulse as the initial condition at t = 0, is the Gaussian distribution, which describes

the tracer concentration at any given time t > 0. If the source is distributed in space

and/or time, the solution to equation (5.11) is the convolution of the Green’s function

with the source.

5.3 Tracer transport with heavy-tailed step length distri-

bution

As detailed in the next section, a heavy-tailed, power-law distribution for step lengths in

gravel bed rivers can result from a thin-tailed pdf of step length for particles of a given

size, together with a thin-tailed pdf of grain sizes. In this section, we develop a formalism

that incorporates heavy tails for the step length distribution into the probabilistic Exner

equation. In equation (5.6), consider fs(r) to be a step length distribution with power-

law decaying tail, i.e., fs(r) ≈ Cαr−α−1 for r > 0 sufficiently large, some constant

C > 0, and some power law index 1 < α < 2. In this case, the Fourier transform

expansion (5.9) in terms of statistical moments of fs(r) is not valid, as the integrals

µn =
∫
rnfs(r)dr do not converge for n > 1 [81]. Instead, we may use a fractional
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Taylor expansion to write [177, 178]:

f̂s(k) = 1 − ikµ1 + cα (ik)α + · · · (5.12)

where cα is a constant that depends only on C and α. Substituting back into equa-

tion (5.8) we obtain:

La

Eb

∂f̂a(k, t)

∂t
= (−ikµ1 + cα (ik)α + · · · ) f̂a(k, t) (5.13)

This equation (6.1) can be understood in terms of fractional derivatives. Fractional

derivatives are close cousins of their integer order counterparts. The fractional deriva-

tive ∂αfa(x, t)/∂x
α can be defined simply as the function whose Fourier transform is

(ik)α f̂a(k, t). As in the normal advection-diffusion case, we make an approximation by

including the first two terms in the expansion and neglecting the higher order terms.

Then by setting v = µ1 and Dd = cα, it follows from (6.1) that the function fa(x, t) is

approximately the solution of the fractional advection-diffusion equation:

La

Eb

∂fa

∂t
= −v∂fa

∂x
+Dd

∂αfa

∂xα
(5.14)

Fractional advection-diffusion has been extensively used in modeling the dispersal of

tracers or pollutants in porous media which exhibit multiple scales of variability, as in

subsurface transport [82, 102, 27] and pollutant transport in rivers [83, 84]. However, to

the best of our knowledge, its application has not yet been explored in the context of river

transport, apart from a recent study which uses fractional advection for transporting

sediment in buffered bedrock rivers [88].

In most natural rivers, the distribution of step lengths holds in the near field, but

eventually transport steps become limited by river features (e.g., bars) that change

the intermediate and far field distributions. The application of the governing equa-

tions (5.11) and (6.3) depends on the natural truncation of the step length distributions.

If the truncation occurs at a very small threshold, then the Central Limit Theorem ap-

plies and a standard advection-diffusion equation will be the governing equation for

the fraction of tracers in the active layer. However, if the truncation occurs at a large

threshold, then the distribution can still be approximated by a power-law in the inter-

mediate field and the governing equation for the fraction of tracers in the active layer

is the fractional advection-diffusion equation. It is worth noting that equation (6.3) is
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the governing equation on scales where the power-law approximation of the step length

distribution is accurate. In the next section, we explain how a power-law distribution

for step lengths could emerge by combining a thin-tailed pdf of step length for particles

of a given size with a thin-tailed pdf of grain sizes. Then in Section 6.4 we describe the

stochastic model underlying the probabilistic Exner equation (5.6), and we show how

equations (5.11) and (6.3) represent long-time asymptotic solutions.

5.4 Transport of sediment mixtures

5.4.1 Generalized Exner equation

A generalization of equation (5.6) for a range of grain sizes D can be expressed as

follows. Let fad (x, t,D) denote the fraction of tracers in the active layer with grain size

D, so that,

fa(x, t) =

∫
∞

0
fad(x, t,D)dD (5.15)

In addition, let Ebu(D) denote the entrainment rate per unit bed content of size D. The

generalization of equation (5.6) is then [179],

(1 − λp)La
∂fa (x, t,D)

∂t

= Ebu(D)
( ∫ ∞

0
fad (x− r, t,D) fs(r|D)dr

− fad (x, t,D)
)

(5.16)

In the above formulation, the conditional pdf of step length fs is specified as a function

of grain size, but the thickness of the active layer La is taken to be a constant for all

grain sizes. The form corresponding to equation (5.6) is obtained by integrating over

all grain sizes,

(
1 − λp

)
La
∂fa (x, t)

∂t

=

∫
∞

0
Ebu(D)

( ∫ ∞

0
fad (x− r, t,D) fs(r|D)dr

− fad (x, t,D)
)
dD

(5.17)

In general, Ebu and fad can both be expected to vary significantly with D. Closure of

equation (5.17) requires specification of forms for Ebu and fad as functions of, among
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other parameters, grain size D. Such forms are available in the literature [165].
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Figure 5.1: Plot showing fitted log-normal (dashed line) and gamma (solid line) distri-
butions, to a grain-size distribution (solid points) reproduced from [12].

The goal of the present analysis is, however, to study the role of heavy-tailed pdfs

for step lengths in driving the diffusion of tracer particles. With this in mind, the

problem is simplified for the purposes of illustration to one in which fad varies in D but

Ebu does not. More specifically, by assuming independence of grain size D on space-

time location (x, t), one can write fad(x, t,D) = fa(x, t)f(D). Then unconditioning of

fs(r|D) with respect to the grain size pdf f(D) in equation (5.17) is used to develop

the Exner equation for a grain size mixture. In the next subsection, we show that a

heavy-tailed pdf for step lengths in a mixture of particles can emerge, under certain

conditions, from two thin-tailed pdfs.

5.4.2 Power laws emerging from thin tails

A typical finding in sediment transport is that step lengths r are exponentially dis-

tributed for a given grain size D [180, 181], i. e.,

P(R > r |D) = e−r/µr(D) (5.18)

where µr(D) is the mean step length as a function of grain size D. If we let f denote

the pdf of grain sizes, then the unconditional distribution of step length can be derived
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from:

P(R > r) =

∫
∞

0
e−r/µr(D) f(D) dD. (5.19)

The resulting pdf for step length, relating to a mixture of particle sizes, depends on

both the mean step length µr(D) for grains of size D, and the pdf of grain sizes.

In this study we explore two distinct cases, one in which µr(D) increases with grain

size, and another for which µr(D) decreases with grain size. The true dependence of

mean step length on grain size in sediment mixtures remains somewhat ambiguous. In

the case of uniform sediment, Nino and Garcia [163] found that grain saltation length

decreases with increasing grain size. One step length, however, typically consists of

around 10 saltation lengths. Hassan and Church [182] have studied the travel distance

of size mixtures of stones in gravel-bed rivers, and have found a marked tendency for

travel distance to decrease with increasing grain size. This result must be qualified in

light of the fact that the distance traveled by a grain during a flood can be expected to

be associated with multiple step lengths. This qualification notwithstanding, the data

suggest a range of conditions under which the dependence between grain size and mean

travel distance can be approximated by the simplified model:

µr(D) = κ/D (5.20)

where κ is a constant. A lognormal pdf of grain sizes

f(D) =
1

Dσ
√

2π
e−

1
2

(ln D−µ)2

σ2 (5.21)

was invoked by [12, 173, 183, 179], where µ, σ are the mean and standard deviation of the

sedimentological scale ψ = lnD. The overall (unconditional) step length distribution

can then be obtained, in principle, by substituting equations (5.20) and (5.21) into

equation (5.19) and computing the integral. However, this integral is difficult to compute

analytically with a log-normal form for f(D). Figure 5.1 shows the grain size data from

[12] along with a lognormal fit, as well as an alternative gamma distribution fit to the

same data. The gamma pdf

f(D) =
νν

Γ(ν)Dm
νD

ν−1 exp

(
−ν D

Dm

)
(5.22)

with meanDm and shape parameter ν provides a convenient alternative to the lognormal

distribution that makes it possible to analytically evaluate the integral (5.19). Following
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the argument of Stark et al. [88], we substitute equations (5.20) and (5.22) into equation

(5.19) and evaluate the integral to obtain the unconditional probability distribution of

step length:

P(R > r) =

(
1 +

(
Dm

νκ

)
r

)−ν

(5.23)

The above equation (5.23) represents a heavy-tailed power-law pdf for the step length

distribution arising from a thin-tailed pdf of step length combined with a thin-tailed pdf

of grain sizes. The distribution in equation (5.23) is known as the Generalized Pareto

distribution, and its variance exists only when the shape parameter ν > 2 [20]. The

Generalized Pareto distribution also arises from exceedances over a fixed high threshold,

and has consequently been used in modeling extreme floods and other hydrological

phenomena [184].

The relationship (5.20) between mean step length and grain size may not be ap-

plicable in all situations. Depending upon the grain size distribution and the flow

conditions, large particles may roll over holes that trap smaller particles, so that step

length increases with grain size. Such a tendency has been reported in the experiments

of Tsujimoto [165]. Also Wong et al. [166] observed that, in the case of uniform sedi-

ment subject to the same bed shear stress, step length increases with grain size. Such an

increase in step length does not directly translate into a higher bedload transport rate

for coarser grains, because the entrainment rate Ebu(D) in equation (5.17) may decline

with increasing grain sizes. In the present simplified analysis, where Ebu is assumed to

be independent of grain size, the tendency for step length to increase with grain size

can be captured in terms of the following simple form:

µr(D) = κD (5.24)

where κ is a constant.

If D has an inverse gamma pdf with mean Dm and shape parameter ν, also similar

in shape to the lognormal,

f(D) =
(ν − 1)νDm

ν

Γ(ν)
D−ν−1 exp

(
−(ν − 1)Dm

D

)
(5.25)

then a change of variables y = 1/D in (5.19) leads to another generalized Pareto:

P(R > r) =

(
1 +

(
1

(ν − 1)Dmκ

)
r

)−ν

(5.26)
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as shown in [185], so that again the step length distribution averaged over all particle

sizes has a heavy tail.

Note that in both cases considered above, whether mean step length increases or

decreases with grain size, a heavy-tailed distribution for step lengths can emerge from a

combination of two thin-tailed distributions. The gamma and inverse gamma distribu-

tions are used for particle sizes, as opposed to the more typical log-normal distribution,

in order to derive analytically the heavy-tail pdf of the resulting step length distribution

for a mixture of grain sizes. The alternative pdf assumption should be considered rea-

sonable if the reader accepts that the fitted log-normal and gamma distributions for the

grain size data from [12] in Figure 5.1 are practically indistinguishable. We hasten to

emphasize, however, that the finding of a possible heavy-tailed pdf for step length is by

no means universal. Many different choices of the grain size pdf f(D) would certainly

lead to a thin-tailed pdf of step length. Our point is simply that both thin-tail and

heavy-tail models are reasonable, and hence it becomes very important to investigate

the grain size distributions more exhaustively, to determine which type of overall step

length pdf applies in a given situation.

5.5 Stochastic model for gravel transport in rivers

In this section, we develop a stochastic model to describe the time evolution of the

relative concentration of gravel tracer particles in rivers. We derive an exact solution

for fa(x, t) and show that, in the long-time asymptotic limit, a thin tail for the step

length distribution leads to classical advection-diffusion, whereas heavy tails for the step

length distribution leads to anomalous advection-diffusion. We start by rewriting (5.6)

in the equivalent form:

∂fa(x, t)

∂t
= −λfa(x, t) + λ

∫
∞

0
fa(x− r, t)fs(r) dr (5.27)

where λ = Eb/La is the rate at which particles are entrained. The Fourier transform of

the above equation is given by:

∂f̂a(k, t)

∂t
= −λf̂a(k, t)

(
1 − f̂s(k)

)
(5.28)

Equation (6.4) describes the time evolution of the pdf fa(x, t) and can be regarded as a

Kolmogorov forward equation for some Markov process X(t), where X(t) represents the
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location of a randomly selected gravel particle at time t > 0 [see 20]. In this context,

fa(x, t) is the pdf of the random variable X(t). In this Markov process, the waiting time

between entrainments has an exponential distribution with a rate parameter λ, and the

number of entrainment events, N(t), by any time t > 0 has a Poisson distribution with

mean λt [20], i.e.,

P [N(t) = n] = e−λt (λt)
n

n!
(5.29)

Let Yn denote the travel distance during the nth entrainment period. Since there are

N(t) entrainment periods by time t > 0, the particle location at some time t > 0 is

given by the random sum:

X(t) = Y1 + · · · + YN(t) =

N(t)∑

i=1

Yi (5.30)

This random sum is a compound Poisson process [e.g., 20]. Its pdf can be derived

directly from equation (5.28) whose point source solution is:

f̂a(k, t) = exp
(
−λt

(
1 − f̂s(k)

))
(5.31)

As a result, the fraction of tracers in the active layer, fa(x, t), can be obtained by taking

the inverse Fourier transform of (5.31) and is given by:

fa(x, t) = e−λt
∞∑

n=0

(λn)n

n!
fn∗

s (x) (5.32)

where fn∗

s (x) is the n-fold convolution of the density function fs(x) (recall that fn∗

s (x) is

the inverse Fourier transform of f̂s(k)
n), which is also the pdf of Y1 + · · ·+Yn. One way

to understand this formula for fa(x, t) is that it randomizes the density of the sum of

the particle movements according to the pdf of the number of jumps N(t). The random

sum, equation (5.30), is a special case of a continuous time random walk (CTRW)

[186, 187, 188]. It is important to note that the connection of the probabilistic Exner

equation with CTRWs allows one to obtain the exact solution of equation (6.4) via

simulation of the tracer particle motion. For example, a forward Kolmogorov equation

of a Markov process can be solved by simulating a CTRW with an exponential waiting

time distribution and step length distribution fs(r) [e.g., 189, 190]. Even if the complete

shape of the pdf of step lengths is not known, the behavior of the stochastic process

X(t) is well defined in the long-time limit as shown below.
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Consider the standardized particle location:

Z(t) =
X(t) − λµ1t√

λµ2t
(5.33)

This random process has a mean 0 and variance 1 at every time t > 0. An easy

calculation shows that the pdf of Z(t) has Fourier transform:

f̂a

(
k√
λµ2t

, t

)
exp

(
ikλµ1t√
λµ2t

)
(5.34)

Combining this equation with:

f̂a(k, t) = exp

(
−λt

(
ikµ1 −

1

2
(ik)2µ2 + · · ·

))
(5.35)

which is obtained by substituting equation (5.9) into equation (5.31) results in the

Fourier transform of the pdf of Z(t) taking the form:

exp

(
−λt

(
−1

2

(ik)2

λµ2t
µ2 +

1

3!

(ik)3

(λµ3t)
3
2

µ3 + · · ·
))

(5.36)

As t→ ∞, (5.36) tends to exp
(
−1

2k
2
)

which is the Fourier transform of a standard nor-

mal density. This shows that Z(t) tends to a standard normal deviate, Z, for large times

t. Substituting into equation (5.33) and solving, we see that the long-time asymptotic

solution for the particle location is:

X(t) ≈ λµ1t+
√
λµ2tZ (5.37)

By taking the Fourier transforms of the corresponding pdfs we obtain:

f̂a(k, t) = exp

(
−λµ1t(ik) +

1

2
λµ2t(ik)

2

)
(5.38)

which is the point source solution to the differential equation:

∂f̂a(x, t)

∂t
≈
(
−λµ1(ik) +

1

2
λµ2(ik)

2

)
f̂a(k, t) (5.39)

Inverting this Fourier transform yields the advection-diffusion equation (5.11) with

v = λµ1 and 2Dd = λµ2, as in Section 7.2. In summary, equation (5.11) governs

the asymptotic particle density in the long-time limit.
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Now consider the case of a particle jump length density with a heavy tail. A similar

argument shows that equation (6.3) governs the asymptotic particle density in the long-

time limit, when the particle jump length density fs(r) has a heavy tail with a power-law

decay, i.e., fs(r) ≈ Cαr−α−1 for r > 0 sufficiently large, some constant C > 0, and some

power law index 1 < α < 2. In this case, we note that the governing equation in the

long-time asymptotic limit for f̂a(k, t) is given by:

∂f̂a(k, t)

∂t
≈ (−λµ1(ik) + λcα(ik)α) f̂a(k, t) (5.40)

Inverting the Fourier transform yields the fractional advection-diffusion equation (6.3)

with v = λµ1 and Dd = λcα, as in Section 6.2. We remark that, while the derivation in

this section is new in the context of stone tracer dispersion, a similar approach was taken

to derive the fractional advection-diffusion equation for tracers in ground water, under a

different set of assumptions [80]. The next section provides a numerical demonstration

to illustrate how a source of tracers will disperse over time under normal or anomalous

diffusion.

The standardized particle location cannot be expressed using equation (5.33) when

the step length distribution has a heavy tail, because the second moment µ2 of the

distribution fs(r) does not exist, i.e., the population variance is infinite while the sample

variance diverges unstably as the number of samples increases [81]. Instead, we consider

the normalized process:

S(t) =
X(t) − λµ1t

(λcαt)
1
α

(5.41)

The pdf of S(t) has the Fourier transform:

f̂a

(
k

(λcαt)
1
α

, t

)
exp

(
ikλµ1t

(λcαt)
1
α

)
(5.42)

Substitution of equation (6.2) into equation (5.31) results in:

f̂a(k, t) = exp
(
−λt

(
ikµ1 − cα(ik)α − dα(ik)2α + · · ·

))
(5.43)

which combined with (5.42) gives the left-hand side of the equation (5.44) for the Fourier

transform of the PDF of S(t). In the long-time limit, i.e., as t → ∞ this tends to the

limit in the right-hand side below, i.e.,

exp

(
λt

(
cα

(ik)α

λcαt
+ dα

(ik)2α

(λcαt)2
+ · · ·

))
→ exp ((ik)α) (5.44)
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since the higher order terms tend to zero as t→ ∞. This limit is the Fourier transform

of a standard stable density, and the limit argument is closely related to the convergence

criterion for compound Poisson random variables (see Chapter 3 in [79] for more details

and extensions). Hence, S(t) ≈ S is standard stable for large times t. Substituting into

equation (5.41) and solving, we see that the long-time asymptotic approximation for

the particle location is:

X(t) ≈ λµ1t+ (λcαt)
1
α S (5.45)

Taking the Fourier transforms of the corresponding pdfs, we obtain:

f̂a(k, t) ≈ exp (−λµ1t(ik) + λcαt(ik)
α) (5.46)

This is the Fourier transform of fa(x, t) with the higher order terms removed, as well

as the point source solution to the differential equation:

∂ ˆfa(k, t)

∂t
≈ (−λµ1(ik) + λcα(ik)α) f̂a(k, t) (5.47)

Inverting this Fourier transform results in the fractional advection-diffusion equation (6.3).

5.6 Tracer dispersal under normal and anomalous diffu-

sion

Consider a patch of tracers entrained instantaneously in the flow at a location x0 and

initial time t0. This patch will advect and diffuse on the gravel bed over time. It is

useful to track the time evolution of the fraction of tracers fa(x, t) in the active layer

at any location x and time t. As was shown in Sections 7.2 and 6.2, the probabilistic

Exner equation can be approximated at late time by a normal or anomalous diffusion,

equations (5.11) and (6.3) respectively, depending on the pdf of step length. In this

section we illustrate the time evolution of a patch of tracers under normal and anoma-

lous advection-diffusion. We know from theory that the Green’s function solution to

the normal advection-diffusion equation is the Gaussian distribution, and the Green’s

function solution to the fractional advection-diffusion is the α-stable distribution [102].

The α-stable distributions are also known as Lévy distributions. Specifically, in our

case, the Green’s function solution to the fractional advection-diffusion equation is an
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α-stable distribution with a skewness parameter β = 1, owing to the fact that step

lengths are positive, so that the stable pdf has a heavy leading tail (see Appendix B

for a description of stable distributions). Figure 5.2(a) shows the evolution of fa(x, t)

under normal advection-diffusion from a pulse at t = 0 and x = 0, i.e., fa(0, 0) = 1.

Figure 5.2(b) shows the evolution of fa(x, t) under anomalous advection-diffusion with

α = 1.5 from a pulse at x = 0. The α-stable densities in Figures 5.2(a) and 5.2(b) were

simulated using the method of Nolan [191]. In this hypothetical experiment, we chose

the parameter values of the normal and anomalous diffusion equations to be unity, i.e.,

v = 1 m/day and Dd = 1 mα/day. Note that the units of the diffusion coefficient, Dd, is

[Lα/T ]. As can be seen by comparing Figures 5.2(a) and 5.2(b), anomalous advection-

diffusion predicts a faster spreading of tracers downstream (heavy leading tails). For

example, the leading tails of the fraction of tracers at t = 100 reaches a near-zero value

at ∼ 50 m downstream of its mean in normal advection-diffusion, whereas it reaches this

value at ∼ 200 m downstream of its mean in fractional advection-diffusion with α = 1.5.

The mean of fa(x, t) in both cases is the same. It is worth noting that both the Gaus-

sian pdf, and the skewed stable pdf, assign some extremely small but mathematically

nonzero probability to the interval left of the particle source, while the probabilistic

Exner equation assigns zero probability to that interval. This illustrates the fact that

both the Gaussian and skewed stable pdfs are only approximations to the relative con-

centration of tracer particles. However, the probability assigned to to the interval left

of the particle source is exceedingly small, since both the Gaussian and skewed stable

pdfs fall off at a super-exponential rate on the left tail [192], and this approximation is

perfectly reasonable in practice.

As seen in the previous section, under equilibrium bedload transport conditions,

the long-time asymptotic solutions of the probabilistic Exner equation converge to the

normal and anomalous advection-diffusion equation depending on the pdf of the step

length. Therefore, long-time asymptotic solutions of the probabilistic Exner equation

are the Gaussian and α-stable distributions in the respective cases of thin or heavy tailed

pdfs for step length. In Figure 5.3 we compare the long-time asymptotic solutions

for several values of α, starting from α = 2 (Gaussian corresponding to the solution

of normal advection-diffusion equation) to α = 1.1. One can easily see the marked
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Figure 5.2: Time evolution of the fraction of tracers in the active layer, fa(x, t), by
(a) normal advection-diffusion (α = 2), and (b) anomalous advection-diffusion with
α = 1.5. Note that the advection term has been removed to facilitate comparison of the
dispersion of the tracers at different times. The initial condition is a pulse at x = 0.
The solutions are obtained with parameters v = 1 m/day and Dd = 1 mα/day. The
times (in days) at which the solutions are obtained are labeled in the figure.
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difference in the dispersal of tracers downstream in normal and anomalous advection-

diffusion. For example, after 500 days, only ∼ 5% of the tracers have been recovered

at ∼ 550 m in standard advection-diffusion, whereas ∼ 8% and ∼ 18% of tracers are

recovered at the same distance in fractional advection-diffusion for α = 1.5 and α = 1.1,

respectively. In the case of α = 1.1 the gravel tracer particles are transported very long

distances downstream when compared with the normal advection-diffusion case (α = 2).

The parameter α of the fractional advection-diffusion relates to the heaviness of the tail

of the pdf of particle step lengths, in effect determining how far downstream the tracers

disperse from the source. In practice, the parameter α will have to be estimated from

observations which typically will not be in the form of step lengths but in the form of

“breakthrough curves” or pdfs of particle concentration at a given location downstream

of the source. Tracer experiments in a large experimental flume are currently under

development to document the possibility of faster-than-normal diffusion of tracers and

the estimation of the parameter α.
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Figure 5.3: Long-time asymptotic solutions of the anomalous advection-diffusion equa-
tion for three different values of α. The solutions shown above are for 500 days after a
patch of tracers is entrained into the flow. Normal advection-diffusion corresponds to
α = 2.
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5.7 Conclusions

In this work, a mathematical framework for the continuum treatment of tracer particle

dispersal in rivers has been proposed, based on the probabilistic Exner equation. We

have shown that when the step length distribution is thin-tailed, the governing equation

for the tracer dispersal in the long-time limit is given by the standard advection-diffusion

equation. However, the step length distributions can be heavy-tailed with power-law

decay arising from heterogeneity in grain sizes and other complexities in real gravel bed

rivers. It was shown that these heavy tails can be modeled using fractional derivatives,

akin to contaminant transport in subsurface hydrology [1, 82, 102, 27]. For a simplified

active layer formulation, the probabilistic Exner equation was shown to be governed by

a Markov process that describes the tracer dispersal problem. Further, it was shown

that the classical (normal) advection-diffusion and fractional (anomalous) advection-

diffusion equations arise as long-time asymptotic solutions of that stochastic model.

A numerical example was then provided to illustrate the profound effect of fractional

diffusion on the leading edge of the particle distribution.

The material presented here is intended to serve as an introduction to the problem

of anomalous diffusion in the context of transport in gravel-bed rivers. The full power

of the techniques introduced here remains to be realized through future research. For

example, the innate variability of rivers is such that the entrainment rate Eb and bed

elevation η are unlikely to be constant in x and t. This variability can lead to long-term

sequestration, and subsequent long-delayed exhumation of tracers. Parker et al. [31] and

Blom et al. [168] have shown how the fractional Exner equation (5.1) can be generalized

to a formulation that assigns a probabilistic structure not only to step length, but also

to the probabilities of entrainment and deposition as continuously varying functions of

vertical position within the bed deposit. These complications can lead to anomalous sub-

diffusion if particle resting times have a heavy, power-law tail. A model that can explain

the deposition and exhumation of particles at arbitrary depth, including variability in

entrainment rate and bed elevation as well as grain size, has the potential to explain at

least part of the tendency for a decrease in advection velocity over time described by

Ferguson and Hoey[147]. One possible approach to modeling anomalous sub-diffusion

caused by power law waiting times between particle movements is by using fractional
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time derivatives, as discussed in the paper of Schumer and Jerolmack [193] in the context

of interpreting geological deposition records. The anomalous advection-diffusion model

proposed herein, as well as further extensions to accommodate additional stochastic

elements of transport as discussed above, will require extensive experiments and data

collection to directly verify the nature of the distribution of step lenghts, waiting times

and entrainment rates of particles in order to select the most appropriate model for

transport.



Chapter 6

Subordinated Brownian Motion

Model for Sediment Transport

Stochastic theories of sediment transport were initiated with the seminal work of Ein-

stein [194], who introduced a Brownian motion model for particle motion. Since then,

these theories were advanced by the need to reproduce the observed statistics of sedi-

ment transport rates or particle movement. In [164], a birth-death process was proposed

for sediment transport, which was later shown, in [159], to be inadequate as it failed to

predict the heavy tails found in the PDFs of the number of moving particles in a given

observation window. In [160], the birth-death model was extended to a birth-death-

immigration-emigration model to reproduce the experimentally observed negative bino-

mial distributions for the number of moving sediment particles. The stochastic nature

of sediment particle entrainment has been widely recognized and considerable efforts

have been invested in modeling this behavior [164, 195, 181, 196]. The underlying as-

sumption of these models is that the shear stress, which is the initiator for sediment

entrainment, follows a Gaussian distribution. However, many experimental studies have

shown that the shear stress fluctuations do not follow a Gaussian distribution and in

particular it has been shown that they follow a Gamma distribution [e.g., 197, 198]. The

role of near-bed turbulence in sediment transport has also been recognized to play an

important role [199, 200]. However, turbulence is well-known to exhibit variability over

a range of scales and it is reasonable to ask whether this multi-scale variability shows

97
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its effect on sediment transport series and bed elevation fluctuations.

In a recent study [50], the dependence of the statistics of sediment transport on

time-scale (sampling time) akin to the scale-dependent statistics of fully-developed tur-

bulence [201] was documented. Specifically, it was shown that the PDF of sediment

transport rates at small sampling times exhibits a heavy tailed distribution which how-

ever approaches a Gaussian distribution as the sampling time increases. To the best of

our knowledge, no stochastic model of sediment transport exists which reproduces this

observed multi-scale statistical structure of sediment transport series. It is the scope of

this study to present such a model, discuss its mathematical properties and its physical

relevance to modeling sediment transport.

The chapter is structured as follows. In the following section a brief review of

multi-scale statistics of sediment transport series observed in a large-scale laboratory

experiment is given. In Section 6.2 the application of a stochastic model, called the

fractional Laplace motion, is proposed to characterize the sediment transport series and

is shown that it is able to reproduce the observed statistics. In Section 6.3 the proposed

model is validated against the sediment transport series obtained from a large-scale

laboratory experiment. Finally, discussion and conclusions are given in Sections 6.4 and

6.5.

6.1 Multi-scale statistics of sediment transport series

A large-scale laboratory experiment was recently conducted in the Main Channel facility

at the St. Anthony Falls Laboratory, University of Minnesota, in order to study sediment

transport dynamics in gravel and sand-bed rivers. The details of the experimental

facility can be found in [50, 51, 202]. Here we briefly describe one of the experiments

from which data was used in this study. The flume is 2.74 m wide and 55 m long, with

a maximum depth of 1.8 m (see Figure 6.1). Gravel with a median particle size (D50)

of 11.3 mm was placed in a 20 m long mobile-bed section of the 55 m long channel.

A constant discharge of water at 4300 liters per second was released into the flume.

At the downstream end of the test section was located a bedload trap, consisting of

5 weighing pans of equal size that spanned the width of the channel. Any bedload

sediment transported to the end of the test-section of the channel would fall into the
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pans, which automatically recorded the weight of the accumulated sediment every 1.1

seconds. Data were collected over a period of 30 hrs once a state of statistical equilibrium

was reached [see 202, 50]. The original series of 1.1 s sampling interval were converted

to 2 mins sediment accumulations via moving averaging in order to remove mechanical

(due to vibration) noise present in the raw data [see 202, 50]. Let us denote by S(t) the

2 mins sediment accumulation series which is shown in Figure 6.2. In this section, we

present the multi-scale analysis performed on this sediment transport series.

Figure 6.1: Experimental flume facility at the St. Anthony Falls Laboratory, University
of Minnesota.
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Figure 6.2: Sediment transport series S(t) (in kgs) at a sampling interval of 2 minutes,
i.e., series of 2 minutes sediment accumulation.

The goal of a multi-scale analysis is to quantify the manner in which the statistics of

the local fluctuations, or variability in a series, changes with scale. In order to investigate
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the multi-scale structure of S(t) over a range of scales, differences (or increments) were

computed at different scales (lags) r, denoted by δS(t, r), as:

δS(t, r) = S(t+ r∆t) − S(t) (6.1)

i.e., δS(t, r) is the incremental sediment accumulation within a time interval r∆t, where

∆t = 2 mins. In [50], “generalized fluctuations” were used defined via wavelet trans-

forms (acting as a differencing filter). Notice that while S(t) can only be positive, the

fluctuation series δS(t, r) will have zero mean and can be both positive and negative.

The estimates of the qth order statistical moments of the absolute values of sediment

transport increments at scale r, also called the partition functions or structure functions,

M(q, r) are defined as:

M(q, r) =
1

Nr

Nr∑

t=1

|δS(t, r)|q (6.2)

where Nr is the number of data points of sediment transport increments at a scale r.

The statistical moments M(q, r) for all q completely describe the shape of the PDFs as

the scale r changes. Statistical scaling, or scale invariance, requires that M(q, r) is a

power law function of the scale, that is:

M(q, r) ∼ rτ(q) (6.3)

where τ(q) is the so-called scaling exponent function. For a scale-invariant series, it has

been shown that the function τ(q) completely determines how the PDF of the variable

changes with scale [e.g., 203, 204]. The simplest form of scaling, known as simple scaling

or mono-scaling, is when the scaling exponents are a linear function of the moment order

i.e., when τ(q) = Hq. In this case, the shape of the PDF remains the same over scales

apart from a rescaling by a deterministic function which depends on the single parameter

H. If τ(q) is nonlinear, the shape of the PDF changes over scales and more than one

parameter is required to describe this change [e.g., 203, 204]. In this case, the series is

called a multi-fractal. For most processes the non-linear relationship of τ(q) with q can

be parameterized as a polynomial, and the simplest form is a quadratic approximation:

τ(q) = c1q −
c2
2
q2 (6.4)

The multi-scale analysis in this framework provides a compact way, using two param-

eters c1 and c2, of parameterizing the change of the PDF over a range of scales. In
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parallel to the statistical interpretation of these parameters, there is also a geometrical

interpretation. Specifically, the parameter c1 is a measure of the average “roughness”

of the series and c2, the so-called intermittency coefficient, is a measure of the tem-

poral heterogeneity of the abrupt local fluctuations in the series (in fact, it relates to

the variance of the so-called local Hölder exponent which measures the local degree of

non-differentiability of the series [e.g., 204]). It is noted that using a higher than second

degree polynomial approximation of τ(q), say a third degree polynomial, introduces a

third parameter c3, which is a measure of the third moment of the local differentiability

of the series and it might be hard to accurately estimate from a limited sample size of

data. Thus, in most practical applications the approximation of τ(q) curve is restricted

to a quadratic function which is parameterized by c1 and c2. Estimation of the multi-

fractal parameters, c1 and c2, can be performed in various ways. For example, one can

use a quadratic fit to the whole τ(q) curve (estimated for several values of q from the

slopes of M(q, r) vs r in log-log space) or use the first two scaling exponents only, τ(1)

and τ(2), or use the cumulant analysis method [e.g., [204] and references therein]. In

this study, we use the quadratic fit to the τ(q) curve for the estimation of the parameters

c1 and c2.

The multi-scale analysis described above was performed on the sediment transport

series shown in Figure 6.2. Figure 6.3(a) shows the scaling of the moments of the

sediment transport increment series δS(t, r) with scale r. It is to note that the structure

functions follow a power-law relation in r over a range of scales from r = 4 to 64 (8 mins

to 128 mins). The scaling exponents of the structure functions, M(q, r) are plotted as a

function of the order of moments q in Figure 6.3(b) for q = 0.5, 1, 1.5, . . . , 3. We observe

that τ(q) has a nonlinear dependence on q, which is an indication of the presence of

multi-fractality and the fact that the shape of the PDF changes with scale. Figure 6.3(c

) displays the PDFs of sediment transport increments at two scales, r = 10 and r = 60

(i.e., 20 and 120 min sediment accumulations, respectively). It is noted that at smaller

scales the PDF of the sediment increments deviates from a Gaussian distribution and is

close to a double-exponential. The PDF, eventually, becomes Gaussian at larger scales.

The PDFs reported in Figure 6.3(c ) are for scales that fall within the scaling regime

of the sediment data series (see Figure 6.3(a)). The dependence of the statistics of the

sediment transport rates on scale has also been documented in field observations (see
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[205] and a discussion in [50]). As discussed above, we estimated the parameters of

multifractality by approximating the τ(q) curve in Figure 6.3(b) as a quadratic function

in q and the estimates obtained together with their 95% standard errors were c1 =

0.41 ± 0.005 and c2 = 0.04 ± 0.004. It is noted for comparison that the c2 estimate

of velocity fluctuations in fully developed turbulence is of the order of 0.03 [201]. We

emphasize that no existing stochastic model for sediment transport addresses the issue

of statistical scale-dependence documented in experimental and field observations. In

the following section, we propose a new stochastic model for sediment transport which

exhibits the observed change in PDFs of sediment transport increments over scales,

reproduces the multi-fractal behavior of the experimental data series and provides the

potential for relating the observed macro-scale statistics to the micro-scale dynamics of

sediment particle movement.

6.2 Proposed model: Fractional Laplace motion

6.2.1 Brownian motion

Brownian motion is widely recognized to be a special case of a Continuous Time Random

Walk (CTRW). In general, CTRWs specify the particle location xi at a time ti by the

iterative discrete equations [e.g., 190, 206]:

xi+1 = xi + ηi (6.5a)

ti+1 = ti + τi (6.5b)

where (ηi, τi) is a set of random numbers drawn from a PDF Ψ (η, τ). One can recast

the above equations in the following form:

tn =

n∑

i=1

τi (6.6a)

x(t) =
n∑

i=1

ηi (6.6b)

where t ∈ [tn, tn+1). The CTRW is said to be decoupled when the random variables

ηi and τi are mutually independent. Brownian motion is a special case of a decoupled
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Figure 6.3: (a) Structure functions of sediment transport series. Vertical lines delineate
the scaling regime which is between 8 mins and 128 mins (see top horizontal axis).
(b) Estimated τ(q) curve (solid points) from the slopes of structure functions and a
quadratic fit (solid line). Deviation from the the straight line establishes the presence
of multi-fractality (see text for parameter values). (c) Change in PDF of sediment
transport increments with scale. The solid dots correspond to PDF at increments of
r = 10 (20 mins)and + to increments at r = 60 (120 mins). The solid line indicates a
Gaussian PDF.
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CTRW where ηi are independent, identically distributed (i. i. d) random variables

drawn from a Gaussian distribution and τi are i. i. d random variables sampled from an

exponential distribution. It is to note that the increments of Brownian motion follow

a Gaussian distribution. However, the increments of most natural phenomena often

show deviation from Gaussian PDFs and this has prompted the introduction of other

stochastic processes such as Lévy walks and continuous-time Lévy flights, where the

random variables ηi and/or τi are sampled from heavy tailed PDFs. However, such

processes do not have all of their statistical moments convergent. For example, Lévy

walks and Lévy flights do not have convergent second-moments [81]. It is also noted

that modeling real data with such processes typically requires an exponential truncation

of the algebraic decays [207], or sometimes an even milder than algebraic decay [208].

Correlation and long-range dependence in the observed data can be modeled by relaxing

the independence assumption in sampling ηi and/or τi or by relaxing the independence

assumption of a decoupled CTRW. Fractional Brownian motion, denoted by BH(t), is

a decoupled CTRW starting at zero and has the following correlation function:

E (BH(t)BH(s)) =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
(6.7)

where E(.) denotes the expectation operator and H is a parameter of fractional Brow-

nian motion called the Hurst exponent. For H = 0.5, the fractional Brownian motion

reduces to the standard Brownian motion with independent increments. For other val-

ues of 0 < H < 1, BH(t) is called the fractional Brownian motion and its increments

are positively correlated for H > 0.5 and negatively correlated for H < 0.5.

An extension of Brownian motion, or fractional Brownian motion, can be obtained

via subordination. The notion of subordination was originated by Bochner [209]. One

can obtain a subordinated stochastic process Y (t) = X (T (t)) by randomizing the clock

time of a stochastic process X(t) using a new time t∗ = T (t). The resulting process Y (t)

is said to be subordinated to the so-called parent process X(t∗), and t∗ is commonly

referred to as the operational time [210]. We propose the application of subordination

of fractional Brownian motion (called fractional Laplace motion) as an extension to

the Brownian motion model proposed by Einstein for sediment transport [164]. In the

following subsection, we describe the properties of subordinated fractional Brownian

motion.
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6.2.2 Fractional Laplace motion

Fractional Laplace motion is a subordinated stochastic process, whose parent process is

fractional Brownian motion and the operational time is a Gamma process [211]:

L(t) = BH(Γt) (6.8)

where BH(t) is fractional Brownian motion with Hurst exponent 0 < H < 1 and Γt

represents a Gamma process for any t ≥ 0. The increments of the Gamma process

(Γt+s−Γt) have a gamma distribution with shape parameter ν = s and scale parameter

β = 1, i.e.,

f(x) =
1

βνΓ(ν)
xν−1e−x (6.9)

For H = 0.5 the subordinated process L(t) = BH (Γt) is called the Laplace motion.

Increments of the fractional Laplace motion defined by Y (t, r) = L (t+ r) − L(t),

called the fractional Laplace noise, form a stationary process. Fractional Laplace noise

has three parameters, namely, the Hurst exponent of the parent process H, the variance

of the parent process BH(t) at the smallest scale t = 1, i.e., σ2 = V ar (BH(1)), and the

shape parameter of the Gamma process (Γt), ν. The variance of the fractional Laplace

noise can be expressed as a function of the scale r and its parameters as [211]:

V ar (Y (t, r)) = σ2 Γ (2H + r/ν)

Γ (r/ν)
(6.10)

The covariance function of the fractional Laplace noise at a given scale r, defined as

ρ(n) = E (Y (t, r)Y (t+ n, r)), can be expressed in terms of its parameters for any n ≥ 1

as:

ρ(n) =
σ2

2

(
Γ (2H + (n+ 1)r/ν)

Γ ((n+ 1)r/ν)
+

Γ (2H + (n− 1)r/ν)

Γ ((n− 1)r/ν)
− 2

Γ (2H + nr/ν)

Γ (Γ (nr/ν))

)
(6.11)

Fractional Laplace noise is positively correlated for H > 0.5 and is negatively correlated

for H < 0.5. In particular, fractional Laplace noise exhibits long-range dependence for

H > 0.5.

The fundamental difference between fractional Laplace motion and other similar

stochastic processes such as fractional Brownian motion and Lévy motion is that in

the latter two cases the PDFs of the increments remain Gaussian and Lévy-stable,

respectively, at all scales. In fractional Laplace motion, the PDFs of the increments
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are variable with scale with Laplace PDFs at small scales and as the scale increases

the PDFs approach Gaussian. In particular, fractional Laplace motion deviates from

the classical self-similarity and shows stochastic self-similarity [211]. The Laplace PDF

emerges from a different and less well-known central limit theorem called the Geometric

Central Limit Theorem which states that the sum of a random number of indepen-

dent, identically distributed variates with finite variance is asymptotically Laplace if

the random count is geometrically distributed [188]. In fact, the Laplace PDF can

be considered as a Gaussian PDF with a random variance or spread [212]. Given the

stochastic self-similarity extensively documented in sediment transport series (in [50]

and also in Section 7.2 of this chapter), the subordination of the fractional Brownian

motion model proposed herein offers an attractive and simple extension to Brownian

motion for particle movement, as demonstrated in more detail in the next section.

6.3 Fractional Laplace motion model for sediment trans-

port

The physical relevance of the fractional Laplace motion to model sediment transport is

argued on the basis that the notion of operational time acknowledges the randomness

in the entrainment time experienced by sediment particles which are subject to a varied

range of velocities in turbulent flows. It is known that turbulent velocity fluctuations

themselves exhibit intermittency and possess a multi-fractal behavior [e.g., [201]]. Tur-

bulent velocity “sweeps” and “bursts” are expected to influence particle motion and

introduce a multi-scale variability in the fluctuations of the resulting sediment trans-

port series. In groundwater hydrology, the notion of operational time has been used

to acknowledge the fact that time passes faster for particles in higher velocity zones

[103, 213]. Along these lines, a subordinated Brownian motion model has been proposed

to model hydraulic conductivity [188] and connections between turbulent velocities and

heterogeneous sediment properties have been proposed [214].

In the following subsections we study the multi-scale properties of fractional Laplace

motion and show that fractional Laplace motion reproduces the intricate stochastic

structure shown by the sediment transport series. Further, we elaborate on the model

parameter fitting to the sediment transport series.
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Figure 6.4: (a) Structure functions of fractional Laplace motion for a set of chosen
parameters H = 0.4, ν = 3.0 and σ = 1 computed from equation (6.12). The vertical
lines correspond to the scaling regime of the sediment transport series which is from
scales of r = 4 to r = 64. (b) Estimated τ(q) curve (solid points) from the fitted
slopes of the structure functions. The solid line indicates a quadratic fit and the non-
linear dependence of τ(q) on q establishes that fractional Laplace motion shows a multi-
fractal behavior in the scales under consideration. (c) Change of PDF of increments of
simulated fractional Laplace motion series. Solid dots correspond to PDF of increments
at r = 10 and + to r = 60. Solid line indicates a Gaussian PDF.
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6.3.1 Multi-fractal properties of fractional Laplace motion

In order to study the self-similar behavior of fractional Laplace motion, we first study

the analytical behavior of the structure functions of fractional Laplace motion. The

structure functions of fractional Laplace motion for σ = 1 can be written in terms of its

parameters H and ν as [211]:

M(q, r) =

√
2q

π
Γ(

1 + q

2
)
Γ(Hq + r/ν)

Γ(r/ν)
(6.12)

Statistical scaling or self-similar behavior requires that the structure functions follow a

power-law relationship in scales. Figure 6.4(a) shows the structure function dependence

on scales in log-log space for an arbitrary choice of the parameter values, H = 0.4 and

ν = 3.0. (These values of H and ν are used for illustration of the model properties and

the estimation of these parameters is discussed more thoroughly in the next subsection).

It is to note that from Figure 6.4(a) that although (6.12) does not analytically accept a

power law expression on r, for all practical purposes, fractional Laplace motion can be

approximated by a self-similar process, i.e., the structure functions show a power-law

relationship in scales at least for the range of scales which coincide with the scaling

regime of sediment transport series (scales or lags of r = 4 to r = 64). Plotting the τ(q)

curve (estimated from the slopes of M(q, r) vs r in log-log space within the above scaling

regime) one can see that the scaling exponents, τ(q), show a non-linear dependence on

the order of moments q (see Figure 6.4(b)). It is to note that the scaling exponents τ(q)

are independent of the variance of the parent process σ2. The change in PDF of the

increments of fractional Laplace motion with scale is shown in Figure 6.4(c ), where the

PDF at small scales (r = 10 in Figure 6.4(a)) shows a double-exponential behavior and

it eventually tends to a Gaussian distribution for large scales (r = 60 in Figure 6.4(a)).

The above results document that fractional Laplace motion can be approximated by

a stochastic self-similar process in an intermediate range of scales and within those

scales it exhibits a multi-fractal behavior. At the limit of very large time-scales, i.e., as

r → ∞, fractional Laplace motion tends to a fractional Brownian motion with τ(q) a

linear function of q (i.e., mono-fractal behavior).

It is interesting to note from equation (6.12) that the second-order structure function

of Laplace motion (H = 0.5 and q = 2) obeys a power law relationship in scales and in
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particular it shows a linear dependence on scales:

M(2, r) = [
2

ν
√
π

Γ(1.5)]r (6.13)

yielding an exponent of τ(2) = 1. This implies that Laplace motion has self-similar

second-order moments, i.e., it shows a log-log linear power spectrum (although higher

order moments are not exact power laws). In the next subsection we elaborate on

the parameter estimation of the fractional Laplace motion from the sediment transport

series.

6.3.2 Model fitting

As seen in the previous section, fractional Laplace motion has three parameters H, ν

and σ. The scale parameter of the operational time PDF, β, is 1 by the definition

of fractional Laplace motion [211]. Estimation of the parameters H and ν from the

sediment transport series is performed by minimizing the mean squared error between

the empirical and theoretical τ(q) curves. The mean squared error, denoted by MSE,

is a function of H and ν and is independent of σ:

MSE(H, ν) =
∑

q

(τm(q) − τ̂(q))2 (6.14)

where τ̂ (q) are the estimated scaling exponents of the sediment transport series (see

Figure

refmfexperiment(b)) and τm(q) are the scaling exponents of the fractional Laplace mo-

tion model which are computed from the slopes of the theoretical M(q, r) versus r within

the scaling regime of the sediment transport series (4 < r < 64) in the log-log space

(see Figure 6.4(b)). Minimization of the mean squared error for the sediment transport

series yields a Hurst exponent of H = 0.39 and a shape parameter of ν = 6.8. It is

to note that the multi-scale structure of fractional Laplace motion model is determined

by the parameters H and ν. Further, we estimate the parameter σ by minimizing the

mean squared error between the variance of the increments of sediment transport series

and the fractional Laplace noise for H = 0.39 and ν = 6.8 over the scaling regime

(4 < r < 64):

σ = Min

r=64∑

r=4

(V ar(δS(t, r)) − V ar(Y (t, r)))2 (6.15)



110

where V ar(δS(t, r)) is the variance of the increments of sediment transport series and

V ar(Y (t, r)) is the variance of fractional Laplace noise at the scale r, given by (6.10).

The value of σ estimated using (6.15) was σ = 0.296. The multi-fractal parameters

of the fractional Laplace motion model computed with the estimated parameters of

H = 0.39 and ν = 6.8 were c1 = 0.41 and c2 = 0.041 which compare very well to the

values estimated from the sediment transport data of c1 = 0.41 and c2 = 0.04. (Note

that c1 and c2 were not used directly in the model fitting which was done via (6.14)

on the whole τ(q) curve). As a result the model and the data-estimated τ(q) curves

are indistinguishable. Figure 6.5(a) shows the increments of sediment transport series

at a scale of r = 20 or 40 mins (note that this scale lies within the scaling regime

of the sediment transport series). For visual comparison, the fractional Laplace noise

simulated series with the estimated parameters H = 0.39, ν = 6.8 and σ = 0.296 at the

same scale is shown in Figure 6.5(b).

As noted in the previous section, fractional Laplace noise is negatively correlated

for H < 0.5. Figure 6.6(a) shows the autocorrelation function of the increments of

sediment transport series at the scale r = 20 (40 mins). The data show a negative

correlation in the scaling regime of the sediment transport series for small lags. This is

qualitatively consistent with the fractional Laplace noise model which shows a negative

correlation for the estimated parameter values (see Figure 6.6(b)). The increments

of fractional Laplace motion at small scales follow a Laplace PDF which eventually

becomes Gaussian at larger scales. Figure 6.7(a) shows the PDF of sediment transport

increments at a scale of r = 4 which is the beginning of the scaling regime of the

sediment transport series. A Laplace PDF provides a good fit to the increments at that

scale. As noted in Figure 6.7(b), the PDF of sediment transport increments at a scale

of r = 64 (128 mins) tends to a Gaussian PDF. Thus, one can see that the sediment

transport series are consistent with the properties of fractional Laplace motion within

the scaling regime.

6.4 Discussion

In the previous section we established the fact that the fractional Laplace motion model

is able to reproduce the intricate stochastic structure of the observed sediment transport
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Figure 6.5: Comparison of the increments of the sediment transport series in kgs at scale
r = 20 (40 mins) (top) and the same scale increments of simulated fractional Laplace
motion series with H = 0.39, ν = 6.8 and σ = 0.3 (bottom). The values of H and ν
were obtained by minimizing the mean squared error defined in equation (6.14). The
value of σ was obtained using (6.15). The scale of r = 20 was chosen for comparison as
it lies within the scaling regime of the sediment transport series.

series over a range of scales and also reproduce the change of the PDFs of increments of

sediment transport series in the scaling regime. In this section, we discuss the physical

significance of the notion of operational time in sediment transport series. Near-bed

turbulence is known to play an important role in sediment transport [199]. Turbulent

velocity fluctuations pick up sediment particles and transport them over long distances.

However, since the turbulent velocities themselves are known to exhibit variability over a

large range of scales, the entrainment time experienced by the sediment particles is also

expected to carry some of this variability. This consideration leads to a randomization of

time over which a sediment particle is operated upon, as sediment particles in different
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velocity zones experience time to move faster or slower depending on whether they are

in a high or low velocity zone, respectively. Thus, the notion of operational time can

arise due to the stochastic nature of sediment particle entrainment. It is interesting to

note that the turbulent velocity fluctuations themselves exhibit Laplace and stretched

Laplace distributions at small scales and their PDFs become Gaussian at larger scales

[215]. It is also interesting to note that the rate of sediment particle entrainments, which

are proportional to the shear stress fluctuations at the bed, have been reported to follow

a Gamma distribution [197]. Both these observations are qualitatively consistent with

the fractional Laplace motion model for sediment transport proposed in this study.
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Figure 6.6: (a) The autocorrelation function of the increments of sediment transport
series at a scale of r = 20 (40 mins). The dashed lines indicate the 95% confidence
intervals (approximated as ±1.96/

√
N , N = 30293 points) on the autocorrelation coef-

ficients. (b) The autocorrelation function of generated fractional Laplace noise series at
the same scale with parameters H = 0.39 and ν = 6.8 fitted to the data. The autocor-
relation of the fractional Laplace noise is computed from equations (6.10) and (6.11).
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The observed multi-scaling and intermittency in sediment transport series (macro-

scale behavior) was shown to arise by the introduction of the notion of operational time

in Brownian-type particle movement (micro-scale behavior). Thus, while the model

parameters H and ν relate to the (unobserved) particle movement statistics, they are

estimated from the (observed) sediment transport statistics, and specifically from their

multi-scale behavior concisely parameterized via the parameters c1 and c2. It is of inter-

est to study how the parameter space of (H, ν) relates to that of (c1, c2) in order to gain

insight on model sensitivity and the physical meaning of the parameter ν which charac-

terizes the variability of the particle motion. We compute the multi-fractal parameters

c1 and c2 for different values of the model parameters H and ν by evaluating M(q, r)

from (6.12), estimating τ(q) in the range 4 ≤ r ≤ 64, and approximating the τ(q) curve

as a quadratic function in q (equation (6.4)). Figure fig:modelspace shows the contour

plots of c1 and c2 for different values of H and ν. It is to note that the average “rough-

ness” of the sediment series, quantified by the parameter c1, is strongly dependent on

the Hurst exponent of the fractional Brownian motion H (see Figure fig:modelspace(a))

and not as much on the parameter ν of the operational time. On the other hand, from

Figure 6.8(b), one can see that the intermittency coefficient c2 is strongly dependent on

the shape parameter ν of the distribution of operational time for a given value of H. In

particular, for a given value of H, the value of c2 is higher for a higher value of ν. One

way to understand this is to note that for higher values of ν the Gamma distribution

has a higher variance. Thus, for higher values of ν the operational time is sampled from

a distribution with higher variance and this variability in the operational time shows

up as a higher intermittency coefficient in the sediment transport series (larger degree

of temporal heterogeneity in bursts of sediment transport increments). It is emphasized

that estimation of the parameter values of the fractional Laplace motion, H and ν,

was performed through the scaling exponents of the structure functions of the sediment

transport series (equation (6.14)). Direct estimation of the parameters H and ν, or for

that matter direct assessment of the whole statistical structure of operational time from

observations, would require access to series of particle entrainment which are difficult

to make and are not available in the experimental setting studied here. Rather, the

present study attempted a physical insight via relating the macro-scale statistics of the

sediment series to the micro-scale dynamics of particle movement.
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Figure 6.7: Change in PDF of sediment transport increments in the scaling regime.
(a) Laplace PDF (solid line) provides a good fit to the PDF of sediment transport
increments at r = 4 (8 mins; beginning of the scaling regime) and (b) the PDF of
sediment transport increments becomes Gaussian (solid line) at r = 64 (128 mins;
ending of the scaling regime).

6.5 Concluding remarks

In this work we proposed the adaptation of fractional Laplace motion as a stochastic

model for sediment transport. Fractional Laplace motion arises from randomization of

the clock time in fractional Brownian motion, and introduces the notion of operational

time. The physical significance of operational time in the context of sediment transport

was reasoned on the basis that the stochastic nature of turbulent velocity fluctuations

near the bed induces stochasticity in particle entrainment and, therefore, the time over

which particles are in motion. The proposed model was shown able to reproduce the

multi-scale statistics of sediment transport series and was validated against a data set
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Figure 6.8: Contour plots of the multi-fractal parameters, c1 (top) and c2 (bottom), for
different values of the fractional Laplace motion model parameters H and ν.

from a large-scale laboratory experiment. The effect of the model parameters on the

multi-fractal parameters of sediment transport series was also discussed. Although

direct estimation of the model parameters would require particle-scale observations, it

was shown here that an indirect estimation based on the statistics of sediment transport

series is possible. We see this work as a step towards relating the micro-scale dynamics

of particle movement to the macro-scale statistics of sediment transport via minimum

complexity stochastic models.



Chapter 7

Statistical Characterization of

Surface Dynamics of the

Depositional Systems

The architecture of stratigraphy is a function of three characteristics of depositional

systems: 1) the topography of an actively deforming surface, 2) the dynamics of the

deforming surface, and 3) the rate of net deposition [216, 54, 217, 61]. As all three of

these properties are influenced by environmental conditions (e.g., climate and tectonics)

the architecture of stratigraphy in sedimentary basins contains a vast amount of data

that could be used to quantitatively reconstruct paleolandscape dynamics across many

time scales [218, 53, 219]. Quantitative analysis of stratigraphy exposed in outcrops

or imaged in seismic data coupled to numerical modeling of sedimentary basin filling

has blossomed over the last thirty years, initiating with the pioneering works by Leeder

[55] and Allen [62]. The general goal for many of these studies was to develop tools to

invert stratigraphic data for paleo-environmental conditions. This exercise has proved

to be a difficult venture. Of the many challenges associated with inverting the strati-

graphic record one of the greatest is characterizing how large magnitude, but infrequent

events (e.g., avulsions, storms, floods) influence the dynamics of depositional systems

and how this information gets stored in stratigraphy. Characterizing these large mag-

nitude infrequent events is challenging because many of these events have recurrence

116
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intervals with intermediate time-scales (101 − 104 years) which make them difficult to

study directly or to constrain using dating techniques [54]. In this study we used data

from a physical experiment on a fluvial system in an experimental basin experiencing

relative subsidence to characterize statistics associated with the fluvial dynamics that

are dominant in these intermediate time-scales (referred to as “mesoscale” dynamics by

Sheets et al. [54]) of depositional systems.

As discussed in [53] and [54] the time-scales associated with mesoscale dynamics lie

between two deterministic end members. Sheets et al. [54] provide a heuristic defini-

tion for the mesoscale time range as one which has a lower bound given by the ‘short’

time-scale (time-scales of evolution of bedforms and bars) on which channels behave

coherently and deterministically in response to the sediment routing system, and an up-

per bound given by the ‘long’ time-scale (time-scales of basinwide deposition) on which

autocyclic variability sums to produce the average behavior represented in stratigraphic

models [53]. In many cases, the mesoscale time range is the domain of stochastic be-

havior associated with avulsion and reorganization of the fluvial system. This has been

recognized at least since the work of Leeder [55] who developed the first physically based

quantitative model for alluvial architecture. In this model, fluvial basins were filled by

channels avulsing at a constant frequency to random locations. Since the publication of

this model many additional alluvial architecture models have been proposed which char-

acterize various properties of the stochastic depositional dynamics (avulsion frequency,

avulsion jump length, etc) through random numbers generated from probability density

functions of various shapes [220, 221, 222]. These models have in part been motivated

by field observations of stratigraphy in which depositional elements are at least partially

organized in a stochastic fashion [223, 224, 225]. However, at present few time-series of

depositional dynamics exist to aid the identification of the type and shape of probability

distributions which should be used for modeling the mesoscale dynamics that result in

stochastic stratigraphy.

The focus of this study is to characterize the probability distributions that describe

the dynamics of depositional systems using a time series of elevation recorded at several

spatial transects during a physical experiment on delta evolution in a net aggradation

setting. During this experiment, elevation was monitored at a temporal frequency com-

parable to the time-scale of the system’s mesoscale dynamics and over a duration long
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enough to generate reliable statistics on the magnitude of elevation increments. In par-

ticular, this study addresses two issues: 1) which probability distributions describe the

processes that govern the depositional dynamics of the system, and 2) to what degree

do physical mechanisms constrain the occurrence of extremes and how are these con-

straints reflected in the probability distributions of the processes? Answering these two

questions will not only improve our ability to characterize the statistics of depositional

systems but will also aid the community in filtering environmental signals preserved in

stratigraphy.

The chapter is structured as follows. In the next section, we give a brief outline of

the experimental data analyzed in this study. In Section 7.2, the variables whose sta-

tistical characteristics are studied are defined along with their notation. In Sections 7.3

and 7.4, a statistical analysis of the random variables which govern the surface dynam-

ics and preserved stratigraphic record in the experimental delta are presented. Having

established the non-Gaussian form of the probability distributions of the processes in-

volved, in Section 7.5 the self-similar structure of surface evolution is characterized

using higher-order statistical structure function analysis. In Section 7.6, we address the

question of what physical mechanisms constrain the occurrence of extremes in deposi-

tional systems and how these constraints reflect in the probability distributions of the

random variables studied. Preliminary thoughts on continuum models for surface evo-

lution of depositional systems consistent with the documented probability distributions

for erosional, depositional and inactivity events are presented in Section 7.7. Finally,

conclusions are drawn in Section 7.8.

7.1 Experimental Setting

The experiment discussed in this study (DB-03) was performed and originally docu-

mented by Sheets et al. [217]. The main focus of the work of Sheets et al. [217] was

documenting the creation and preservation of channel-form sand bodies in alluvial sys-

tems. Since this initial publication, data from the DB-03 experiment have been utilized

in studies on compensational stacking of sedimentary deposits [224] and clustering of

sand bodies in fluvial stratigraphy [223]. In this section we provide a short description

of the experimental setup. For a more detailed description see [217].
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The motivation for the DB-03 experiment was to obtain detailed records of fluvial

processes, topographic evolution and stratigraphy, with sufficient spatial and temporal

resolution to observe and quantify the deposition of channel sand bodies. The ex-

periment was performed in the Delta Basin at St. Anthony Falls Laboratory at the

University of Minnesota. This basin is 5 m by 5 m and 0.61 m deep (Figure 7.1(A)).

Accommodation is created in the Delta Basin by slowly increasing the base level by way

of a siphon-based ocean controller. This system allows for the control of base level with

millimeter resolution [217].

~ocean~
shoreline

infeed

point

Line 1.50

Line 1.75

Line 2.00

5 m

5 m

2.5 m

ocean

control
A

B

Figure 7.1: (A) Schematic of the experimental arrangement. The data used in this
study is of the transect labelled Line 1.75. This transect is located at a perpendicular
distance of 1.75 m from the sediment infeed point. (B) A photograph of the DB-03
experiment at a run-time of approximately 11 hrs.

The experiment included an initial buildout phase in which sediment and water were

mixed in a funnel and fed into one corner of the basin while base level remained constant.
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The delta was allowed to prograde into the basin and produced an approximately radially

symmetrical fluvial system. After the system prograded 2.5 m from source to shoreline

a base level rise was initiated. Subsidence in the Delta Basin was simulated via a

gradual rise in base level, at a rate equal to the total sediment discharge (Qs) divided

by the desired fluvial system area. This sediment feed rate allowed the shoreline to be

maintained at an approximately constant location through the course of the experiment.

A photograph of the experimental deposit, including the topographic measurement lines

is shown in Figure 7.1. Sheets et al. [217] used a sediment mixture of 70% 120 µm silica

sand and 30% bimodal (190 µm and 460 µm) anthracite coal.

Topography was measured with a subaerial laser topography scanning system, sim-

ilar to the system used in the Experimental Earthscape Basin (XES) [54]. Unlike the

XES system, however, where the topography of the entire fluvial surface is mapped peri-

odically, topography was monitored at 2 minute intervals along three flow-perpendicular

transects, located 1.50 m, 1.75 m, and 2.00 m from the infeed point. To measure a full

cross-section of topography, including areas inundated by water, the experiment was

stopped every two minutes and water was allowed to drain off the fluvial surface prior

to collecting measurements. The time series of deposition along the transect located

1.75 m from the infeed is shown in Figure 7.2 . With this system, we obtained measure-

ments with a sampling interval of 0.8 mm in the horizontal and measurement precision

of 0.9 mm in the vertical. This experiment lasted for 30 hours and produced an average

of 15 cm of stratigraphy.

No attempt was made to formally up-scale the results from this experiment to field-

scale. In addition, parameters associated with this experiment were not set to produce

an analogue to any particular field fan-delta system. As such, specific geometric data

associated with this experiment cannot strictly be utilized to estimate the field scale

deposit geometries or dynamics of a specific system. Rather, the goal of the experiment

was to create a self-organized, distributary depositional system in which many of the

processes characteristic of larger fan-delta systems could be monitored in detail over

spatial and temporal scales which are impossible to obtain in the field. This experimental

technique is similar to the ‘similarity of process’ philosophy outlined in [226]. As such

the focus in this chapter is on identifying the general class of distributions (i.e., heavy

vs. thin tail) which characterize the dynamics of topography in the DB-03 experiment
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and their relation to the architecture of the preserved stratigraphy.
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Figure 7.2: Temporal evolution of the transect Line 1.75. The temporal resolution of
the data available is 2 mins and the duration for which the data was recorded is 30 hrs.
A time transect of elevation is marked as A-A and the plot of that transect is shown in
the lower panel.
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Figure 7.3: Elevation increments in time along three different transects, (A) corresponds
to transect A-A, of Figure 7.2. The positive values indicate magnitude of depositions,
negative values indicate magnitude of erosions and the zero values indicate periods of
inactivity.

7.2 Terminology

The experimental data used in this study consists of a 30 hrs temporal evolution of

an elevation transect (Line 1.75 in Figure 7.1) with a temporal resolution of 2 mins
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(as described in Section 9.2). At any spatial location along the Line 1.75, we define

elevation increments in time as,

δh(t) = h(t+ ∆t) − h(t) (7.1)

where h(t) is the elevation at time t at a given location and ∆t is the temporal res-

olution of the experimental data. Figure 7.3 shows the elevation increments at three

different locations along Line 1.75. Positive values of elevation increments correspond

to deposition, negative values to erosion and were denoted as,

Di = δh(t) > 0 (7.2a)

Ei = δh(t) < 0 (7.2b)

while δh(t) = 0 corresponds to inactivity at that given location. Each of these three

processes, deposition, erosion and inactivity, has a characteristic time-scale of opera-

tion. Periods of inactivity, τi, are defined as continuous periods during which neither

deposition nor erosion occurs in the system, i.e., δh(t) = 0. Similarly, durations of

depositional events, τd, are defined as the periods during which continuous deposition

occurs in the system, i.e., the uninterrupted periods for which δh(t) > 0, while dura-

tions of erosional events, τe, are defined as the periods during which continuous erosion

occurs, the uninterrupted periods for which δh(t) < 0. Further, the magnitudes of a

single depositional event (De) or an erosional event (Ee) are defined as the sum of all

the elevation increments during the duration of a single depositional event (τd) or an

erosional event (τe), respectively,

De =

τd∑

i=1

Di (7.3a)

Ee =

τe∑

i=1

Ei. (7.3b)

It is easy to see that these magnitudes of depositional and erosional events are random

sums of random variables. The schematic of Figure 7.4 shows the random variables

defined which characterize the surface evolution of the depositional system. The sta-

tistical characteristics of this set of random variables (δh(t),Di, Ei,De, Ee, τd, τe, τi) are

studied in Section 7.3.
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Figure 7.4: A schematic showing the elevation increments in time, and the definitions
of the random variables studied in Section 7.3. Magnitudes and durations of erosional
and depositional events, along with the periods of inactivity are shown.

The stratigraphic column that results from such an erosional-depositional process

can be formed from the elevation time series as shown in the schematic of Figure 7.5.

Stratigraphic deposits are depositional bodies bound between two erosional boundaries.

The thickness of any deposit is denoted by Dst. The time interval demarcating the

boundaries of the stratigraphic depositDst is denoted by τst. The preserved stratigraphy

is completely described by these two random variables (Dst and τst) whose statistical

properties are studied in Section 7.4.
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Figure 7.5: A schematic showing the building of a stratigraphic column from the ele-
vation time series. Stratigraphic deposits are depositional bodies bound between two
erosional events. Elevation increments (δh(t)), duration between stratigraphic deposits
(τst) and thickness of stratigraphic deposits (Dst) are shown above.
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7.3 Statistical characteristics of surface evolution

In this section, we present statistical analysis of random variables that govern the sur-

face dynamics of delta evolution, namely, surface elevation increments (Di, Ei), the

magnitudes of erosional and depositional events (De, Ee) and durations of erosional

and depositional events (τd, τe), as well as the periods of inactivity, τi. All the statistics

presented in the following subsections were computed on the ensemble of time transects

along the horizontal line (as shown in Figure 7.2) and the total number of time transects

available was 2502, each for a duration of 30 hrs.

7.3.1 Statistics of erosional and depositional magnitudes

Consider the elevation increments, δh(t), as defined in equation (7.1). Figure 7.6 shows

the probability density function (pdf) of the elevation increments normalized by their

standard deviation in semi-log scale. It is noted that the pdf of increments exhibits a

concave-up decay in the tails of the pdf indicating a heavy-tail behavior and considerably

deviates from a Gaussian pdf (shown as the solid parabola in Figure 7.6). The log-log

linear decay (see Figures 7.7(A) and (C)) in the left and right tails of the elevation

increments establishes that the positive and negative increments (deposition and erosion,

respectively) are heavy-tailed. In contrast to thin-tailed pdfs, where the chance of

occurrence of an extreme event is vanishingly zero, in heavy-tailed pdfs an extreme

event has a small, but significant chance of occurrence. Heavy-tailed pdfs often have

a power-law decay, which is a slower decay than exponential (e.g., exponential pdf)

and super-exponential decays (e.g, Gaussian pdf), thus, assigning a relatively higher

probability for the occurrence of extremes. In this subsection we characterize the pdfs

of both erosional (Ei = δh(t) < 0) and depositional (Di = δh(t) > 0) magnitudes.

A common pdf with power-law decay is a Pareto distribution. The density of a

Pareto distribution is given by:

f(x) = α
γα

xα+1
(7.4)

where α is the tail index, γ is the minimum possible value of the random variable and

the density is defined for x ≥ γ. The probability of exceedance of a Pareto distribution

is given by:

P (X > x) =
(γ
x

)α
(7.5)
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Figure 7.6: Relative frequency of elevation increments δh(t) in semi-log scale (solid
circles); the solid line indicates a Gaussian density. The concave-up shape of the tails
indicate the presence of heavy-tailed behavior (a linear decay corresponds to exponential
decay of tails) and show that elevation increments deviate considerably from Gaussian
behavior.

It is easy to see that a Pareto distribution assigns a finite probability for the occurrence

of very large magnitude events (no upper limit), which do not typically occur in natural

systems owing to constraints set by physical mechanisms that govern the evolution of

the system (for example, see [227] and [228] for upper bounds reported on probability

distributions of other systems). One common truncated heavy-tailed, power-law pdf is

the truncated Pareto distribution. The density of the truncated Pareto distribution is

given by:

f(x) =
αγαx−α−1

1 − (γ/ν)α (7.6)

and its probability of exceedance is given by:

P (X > x) =
γα (x−α − ν−α)

1 − (γ/ν)α
(7.7)

where ν is the truncation parameter or the upper bound on the random variable, α is

the tail index and γ is the lower bound on the random variable X. We fitted Pareto
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and truncated Pareto distributions to both the depositional and erosional magnitudes,

as shown in Figures 7.7(B) and (D), respectively.

In [229], a maximum likelihood estimation (MLE) method was proposed to estimate

the parameters α and γ of the Pareto distribution and that method is adopted in this

study. In [230], a MLE method was proposed to estimate the parameters of the truncated

Pareto distribution and this method is adopted in our study. The estimation involves

the conditional MLE based on the (k + 1) largest-order statistics representing only the

portion of the tail where the truncated Pareto approximation holds. Let X1,X2, · · · ,Xn

denote a random sample from a truncated Pareto distribution, and X(1) ≥ X(2) ≥
· · · ≥ X(n) denote its order statistics, where X(k) is the kth largest observation. The

conditional MLE for the parameters of the truncated Pareto distribution based on the

(k + 1) largest-order statistics is given by: ν̂ = X(1), γ̂ = k1/α̂
(
X(k+1)

)
[n − (n −

k)(X(k+1)/X(1))
α̂]−1/α̂, and α̂ is obtained by solving,

k

α̂
+
k(X(k+1)/X(1))

α̂ln
(
X(k+1)/X(1)

)

1 −
(
X(k+1)/X(1)

)α̂ −
k∑

i=1

[lnX(i) − lnX(k+1)] = 0. (7.8)

Aban et al. [230] proposed an asymptotic level-q test (0 < q < 1) which rejects the

null hypothesis H0 : ν = ∞ (Pareto distribution) when X(1) < [(nC)/(−lnq)]1/α, where

C = γα. The corresponding p-value of this test is given by p = exp
(
−nCX−α

(1)

)
. In

practice, they proposed the use of the Hill’s estimator,

α̂H =

(
k−1

k∑

i=1

(
lnX(i) − lnX(k+1)

)
)−1

(7.9a)

Ĉ =
k

n

(
X(k+1)

)α̂H (7.9b)

for the estimation of parameters C and α. A small value of p < 0.1 (suggested by

Clauset et al. [229] as a conservative estimate) in this case indicates that the Pareto

distribution does not provide a good fit to the data. A detailed description of the proofs

and method for estimating the parameters of the distribution can be found in [230].

Using the above test, we rejected the Pareto distribution for Di and Ei as the esti-

mated p-values (0.0022 and 0.0048) were less than 0.1. However, the truncated Pareto

distributions provided an acceptable fit to the data for the magnitudes of Di and Ei (see
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Figure 7.7). The estimated tail indices of the best fit truncated Pareto distributions for

positive elevation increments, Di, and negative elevation increments, Ei, are α̂1 = 2.41

and α̂2 = 1.1, respectively (see Table 7.1 for a summary of the parameters of the fitted

distributions and the lengths of the series available for computing the statistics). Aban

et al. [230] suggested that goodness of fit of the truncated Pareto distribution is a

graphical check of the data tail. The upper bound on both these pdfs was found to be

35 mm. These findings lend strong support for the use of heavy-tailed distributions for

the modeling of dynamics of surface evolution in a deltaic system.
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Figure 7.7: Log-log plot of probability density function of (A) positive elevation incre-
ments (Di), and (C) negative elevation increments (Ei). An indicative slope of −2.5 is
shown for reference to establish a power-law decay of this distribution. Log-log plot of
probability of exceedance for (B) positive elevation increments and (D) magnitudes of
negative elevation increments (empty circles) along with the best fit truncated Pareto
distribution (solid black line) and best fit Pareto distribution (dashed line). The esti-
mated parameters of these distributions are summarized in Table 7.1.

Further, we defined the magnitude of a depositional event as the sum of the elevation
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increments over the duration of that deposition (equation (7.3a)). These random sums

of elevation increments, as defined by Kolmogorov [231], are the thickness of a stratum

before any further erosion occurs. Erosional events were defined as the random sum of

magnitudes of negative increments over the duration of erosional events. It is important

to note that the depositional and erosional events are the random variables which finally

define the thickness of the preserved stratigraphic column [231]. Figure 7.8 shows the

probability of exceedance of De and Ee along with their best fit Pareto and truncated

Pareto distributions. The Pareto distribution does not provide a good fit to the data

of De and Ee and the estimated p-values of the fits were 4.05 × 10−4 and 1.63 × 10−6,

respectively. The tail indices of the best fit truncated Pareto distributions for De and

Ee are α̂′
1 = 3.31 and α̂′

2 = 3.03, respectively. The distributions of the depositional and

erosional events have a faster decay of tails than their parent distributions of Di and Ei

(α̂′
1 > α̂1 and α̂′

2 > α̂2), indicating that heavy-tailed surface statistics need not always

be preserved in the stratigraphic column thicknesses as the random variables which

govern the thickness of deposits have thinner tails than their parent distributions. In

the next subsection, we present the analysis of the time statistics of surface evolution,

i.e., the durations of erosional and depositional events and periods of inactivity.
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Figure 7.8: Log-log plot of probability of exceedance of (A) depositional events (De)
and (B) erosional events (Ee). The inset figures show the log-log plots of the probability
density functions of depositional and erosional events, respectively. Best fit truncated
Pareto distributions are shown in solid black lines and the best fit Pareto distributions
are shown in dashed lines. Note that in both cases, a random sum of the elevation
increments results in a distribution with a thinner tail than the parent distribution (see
Table 7.1 for estimated parameters).
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7.3.2 Statistics of periods of inactivity

The relative frequencies computed from the experimental data of the durations of de-

positional and erosional events, as well as the periods of inactivity, are shown in Fig-

ures 7.9(A), 7.9(B) and 7.9(C), respectively. It was found that the mean and standard

deviations of the durations of depositional and erosional events were µ̂τd
= 2.64 mins,

σ̂τd
= 1.41 mins and µ̂τe = 2.23 mins, σ̂τe = 0.781 mins, respectively, while the mean

and standard deviation of the periods of inactivity was µ̂τi
= 20.4 mins and σ̂τi

= 30.52

mins. It is noted that the mean and standard deviations of τd and τe are an order

of magnitude less than that of τi, indicating that the dominant temporal scale of the

system is that of inactivity. The durations of erosion and deposition events have a mean

approximately equal to the temporal resolution of the data with a very small standard

deviation and it was found that an exponential distribution adequately describes these

random variables.

The periods of inactivity, τi, were found to have a heavy-tailed distribution charac-

terized by a log-log linear decay of pdf as shown in inset plot of Figure 7.10. Figure 7.10

shows the probability of exceedance and the best fit Pareto and truncated Pareto dis-

tributions to the data of periods of inactivity. The Pareto distribution does not provide

a good fit to the data of periods of inactivity and the estimated p-value of the fit was

0.056. The truncated Pareto distribution (equation 7.7), fitted using the method pro-

posed by Aban et al. [230] (which is briefly outlined in Section 7.3.1), was found to

provide a good fit to the experimental data. The parameters of the fitted distribution

were tail index, β̂ = 1.14, lower bound, γ̂ = 8 mins and upper bound, ν̂ = 240 mins.

The truncation parameter ν̂ is equal to 4 hrs and is expected to be governed by some

physical forcing (autogenic dynamics) of the depositional system, and specifically to the

characteristic avulsion time scale of the channels, as will be discussed in Section 7.6.

Thus, we conclude that the random variables which govern the dynamics of surface

evolution, namely, Di, Ei, De, Ee, and τi, all exhibit heavy-tailed statistics.
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Figure 7.9: Probability density functions of (A) the duration of depositional events
(τd), (B) the duration of erosional events (τe) on a log-log plot, and (C) the periods of
inactivity (τi) on a semi-log plot. The bin size has been selected equal to 2 mins which
is the temporal resolution of the series. It is noted that the dominant time scale in the
system is that of inactivity.
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Figure 7.10: Probability of exceedance plot of the periods of inactivity τi plotted on a
log-log scale. The empty circles indicate the empirical density of the data, the thick
solid line shows the best fit truncated Pareto distribution and the dashed line shows
the best fit Pareto distribution. The parameters of the truncated Pareto distribution
are: tail index β̂ = 1.14 and truncation parameter ν̂ = 240 (4 hrs). The truncation
parameter ν̂ was found to correspond to the avulsion time scale of the mean channel
depth which is around 2 cms in the system. The inset plot shows the pdf of τi on a
log-log scale. Notice the power-law decay of the distribution, indicating a heavy-tailed
behavior.
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Random variable Sample size Truncated Pareto fit Pareto fit
Tail index Upper bound Lower bound Lower bound Tail index

Di (mm) 565237 2.41 35 mm 2 mm 5.2 mm 2.41
Ei (mm) 379931 1.1 35 mm 0.3 mm 1.2 mm 1.16
De (mm) 76220 3.31 40 mm 4.5 mm 12.5 mm 3.31
Ee (mm) 52064 3.03 25 mm 2.7 mm 9.5 mm 3.03
τi (mins) 186172 1.14 240 mins 8 mins 84 mins 2.44
τst (mins) 133888 0.7 320 mins 4 mins 10 mins 0.88

Table 7.1: Estimated parameters of fitted truncated Pareto and Pareto distributions. The standard error of estimate
for the all parameters is of the order of 10−3 in view of the large sample size.
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7.4 Statistics of preserved stratigraphy

Stratigraphic columns can be built from the elevation time series (see Figure 7.5) and

in this section we analyze the statistics of the stratigraphic deposit thickness (Dst) and

the time interval demarcating the boundaries of the stratigraphic deposits, τst (called

“hiatuses” in [193]).

The inset plot of Figure 7.11(A) shows the pdf of the time interval demarcating

the stratigraphic column in a log-log plot. It is noted that τst shows a heavy-tailed

behavior which can be seen from the power-law decay of the pdf. Figure 7.11(A) shows

the probability of exceedance of τst along with its best fit Pareto and truncated Pareto

distributions (see Table 7.1 for a summary of estimated parameters of these distribu-

tions). The Pareto distribution does not provide a good fit to the data of τst and the

estimated p-value from equation (7.9) was found to be 0.0017. The truncated Pareto

distribution provides a better fit than the Pareto distribution to the experimental data

with estimated parameters: tail index β̂′ = 0.7, upper bound ν̂ ′ = 320 mins, and a lower

bound 10 mins. The time interval demarcating the stratigraphic deposits is a random

sum of durations of erosional and depositional events (τd and τe) as well as the periods

of inactivity (τi). Since the dominant time scale is given by the periods of inactivity,

τst is in effect a random sum of the periods of inactivity. The tail index of τst is lower,

β̂′ = 0.7, indicating a heavier tail for τst than its parent distribution of τi (β̂ = 1.1).

The implications of the tail index of τst being less than 1 and the mechanisms that set

the scales of truncation on this pdf are discussed in Section 7.6.

The thickness of beds preserved in the stratigraphic columns was calculated in two

different ways: 1) constructed from the topographic data collected during the experi-

ment (termed De
st ), and 2) directly measured from the the digital images of the pre-

served stratigraphy available after sectioning the final deposit (termed Ds
st ). A com-

parison of the statistics of these two independently estimated variables tests the degree

to which our definition of a bed as a package of sediment bounded by erosional surfaces

translates to features readily identifiable by textural changes in the deposit.

Bed thicknesses, De
st , were constructed from the elevation measurements as outlined

schematically in Figure 7.5. At each spatial location, the elevations of all preserved

erosional boundaries were first identified and then the thicknesses of sediment bounded
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by those preserved erosional surfaces were calculated. The probability density function

of the preserved bed thickness, De
st, is shown in Figure 7.11(B). Unlike the increments

of deposition and erosion discussed above, the thickness of beds exhibits a thin-tailed

PDF. Figure 7.11(B) shows that an exponential distribution with mean 〈De
st〉 provides

a good fit to the calculated bed thicknesses.
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Figure 7.11: (A) Probability of exceedance of the time interval demarcating the strati-
graphic deposit (τst), along with its best fit truncated Pareto (solid line) and Pareto
distributions (dashed line). The inset plot shows the pdf of τst on a log-log scale. (B)
Semi-log plot of the pdf of bed thickness (Dst) along with the best fit exponential dis-
tribution (dashed line). The estimated mean of the fitted exponential distribution is 8.3
mm. The inset figure shows the exponential fit on a log-log scale.

Bed thicknesses, Ds
st, were computed from the images of preserved stratigraphy using

the high optical contrast between the white quartz grains and black anthracite grains.

The difference in density (quartz: 2650 kg/m3 versus anthracite: 1700kg/m3) results in

differences in their relative mobility, that is, the lighter anthracite particles tend to be

more mobile than the quartz grains and are therefore a proxy for fine sediment. This

difference in mobility is recorded in the deposit where the coal and quartz often form

distinct depositional bodies, such as channel fills and lobes [217], and develop textural

boundaries between white and black sediment which can be used as bed boundaries.

Using undistorted images of the physical stratigraphy (Figure 7.12(A)) we generated

stratigraphic panels with a binary identification scheme. Using a threshold luminosity

value we separated anthracite deposits from quartz deposits. The threshold value used

for this operation was picked by identifying a value that on visual inspection appeared
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to correctly separate the deposit types. Using these binary images (Figure 7.12(B))

we measured bed thicknesses from the stratigraphy, Ds
st, as uninterrupted vertical se-

quences of pixels of a single grain type (i.e., either only white or only black). The

probability density function of preserved bed thickness, Ds
st, is shown in semi-log space

in Figure 7.12(C). Similar to the PDF of De
st estimated from the surface elevation

measurements, the PDF of Ds
st estimated from the physical stratigraphy is close to ex-

ponential with an estimated mean, 〈Ds
st〉, of 9.5 mm. Importantly, we note that the two

distributions of bed thickness, one theoretical, and one measured, both demonstrate

that the heavy-tailed statistics of deposition and erosion that characterize the surface

evolution are not preserved in the stratigraphy.

We emphasize that the theory of Kolmogorov [231] used the surface elevation time

series to construct the preserved bed thicknesses. This is not the same as extracting

bed thicknesses from physical stratigraphy as the observable stratal boundaries are

not exactly equivalent to the definition of bed boundaries as defined by Kolmogorov

[231]: not all visible stratal boundaries are erosional, and not all erosional boundaries

result in a change of sediment type. Rather, the boundaries we mapped represent a

straightforward class of bed boundaries one might map in the field. A pleasing result

of our analysis is the agreement between the constructed and physical stratigraphy

statistics giving more confidence in applying the analytical results of Kolmogorov [231]

and other studies which use elevation series to define preserved bed thickness. In the

next section, we characterize the self-similar fractal structure of the temporal evolution

of the surface elevations.

7.5 Multifractality of surface evolution

Surface elevation increments are found to exhibit variability at all scales. For example,

Figure 7.13 shows the temporal evolution of a given transect (transect A-A in Figure 7.2)

that possesses a devil’s staircase-like structure. Notice that visually, the structure of

evolution when viewed at different time scales (shown as inset plots in Figure 7.13) looks

statistically similar. One common way of documenting the self-similar structure of a

given time series is to look at the power spectral density of the time series. Figure 7.14
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Figure 7.12: Information defining distribution of bed thicknesses for DB-03 experiment
generated from images of physical stratigraphy. (a) Photograph of approximately 0.14
m of stratigraphy generated during DB-03 experiment. Stratigraphic section is located
approximately 1.75 m from source. (b) Facies map of stratigraphy where white pixels
represent quartz deposits and black pixels represent coal deposits. Quartz and coal
deposits were identified through threshold luminosity analysis. (c) PDF of Ds

st shown
in semi-log space generated from deposit facies map. Linear decay of bed thicknesses in
semi-log space suggests exponential distribution.

shows the power spectral density as a function of wavelength for the ensemble of tem-

poral transects along Line 1.75. A power-law decay, with an exponent of φ = −2.1

documents the presence of statistical scaling in the temporal evolution of elevation time

series. The Hurst exponent (H) which is a measure of the “roughness” of the time

series is related to the spectral density’s power law decay exponent as −φ = 2H + 1

[232] resulting thus in H = 0.55. The fractal dimension D0 and the Hurst exponent

relate as D0 = 2 −H [232], leading to an estimated fractal dimension for the elevation

time series of D0 = 1.49.

The power spectral density expresses the scaling of the second order moment (vari-

ance) of the series and completely characterizes the scaling of Gaussian random vari-

ables. Since the pdf of elevation increments was documented to significantly deviate

from the Gaussian form, it is important to test for scaling in higher-order statistical

moments. We performed higher-order structure function analysis of the elevation time

series to characterize the statistical scaling of the temporal evolution of the deltaic sur-

face. Elevation increments in time were computed at different scales r, denoted by
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Figure 7.13: Time transect of elevation surface (A-A transect in Figure 7.2). The Devil’s
staircase like structure is shown in the plot by magnifying small portions of the elevation
transect over time. The flat periods in the above plot show the periods of inactivity in
the system.

δh(t, r), as

δh(t, r) = h(t+ r∆t) − h(t) (7.10)

where ∆t is the temporal resolution of the experimental data. The estimates of the

qth-order statistical moments of the absolute values of elevation increments at scale r,

also called structure functions, M(q, r), are defined as

M(q, r) =
1

Nr

Nr∑

t=1

|δh(t, r)|q (7.11)

where Nr is the number of data points of elevation increments at a scale r. Statistical

scaling, or scale invariance, requires that M(q, r) is a power-law function of the scale,

M(q, r) ∼ rζ(q) (7.12)

where ζ(q) is the scaling exponent function. When the scaling exponent function has

a linear dependence on the order of the statistical moments, i.e., ζ(q) = qH, the series
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Figure 7.14: Power spectral density of elevation time transects on a log-log plot. The
gray dots correspond to the power spectral density of each of the time transects and the
solid white circles indicate the log-binned average of the power spectral density. The
log-log linear decay with an exponent of φ = −2.1 establishes the self-similar structure
of the elevation time series.

is called mono-fractal and H is the so-called Hurst exponent. If the scaling exponent

function has a non-linear dependence on the order of statistical moments then the series

is called a multi-fractal. The simplest way to characterize the nonlinear dependence of

ζ(q) on q is by using a quadratic approximation,

ζ(q) = c1q −
c2
2
q2 (7.13)

where c1 and c2 are constants parameterizing the scale-invariance of the series over a

range of scales (see [233] and [204]). Note that from equation (7.11) that the zero-order

structure function M(0, r) is trivially equal to 1 and thus (from equation (7.12)) scale

independent. This approach therefore, does not allow us to characterize the possible

fractality of the “sparseness” of the data series. However, as seen in Section 7.3.2,

the periods of inactivity exhibit a heavy-tailed distribution implying the existence of

flat regions of all scales in the evolution of the elevation time series (see Figure 7.13) or

sequences of zeroes of all scales in the time series of elevation increments (see Figure 7.3).

Quantifying the non-trivial scaling of the zeroth order moment of a data series would

require relaxing the ζ(0) = 0 assumption in equation (7.13) and introducing a positive
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constant c0 in the characterization of the nonlinear dependence of the scaling exponents,

ζ(q) = c0 + c1q −
c2
2
q2 (7.14)

Figure 7.15(A) shows the estimated higher-order structure functions, M(q, r), as a func-

tion of scale r. The log-log linear relationship of M(q, r) on r over the range of scales 2−
256 mins (21−28 in log scale) for the moments of order q = 0.1, 0.25, 0.5, 0.75, 1.0, . . . , 3.0

documents the scale-invariance of the elevation increments. In Figure 7.15(B), the scal-

ing exponent function ζ(q) is plotted against the order of moments. The nonlinear

dependence of ζ(q) on q documents the multi-fractal behavior of the elevation incre-

ments. Fitting the quadratic function of equation (7.14) to ζ(q) results in c0 = 0.192,

c1 = 0.58 and c2 = 0.171. These three parameters c0, c1 and c2 fully characterize the

scaling of all statistical moments and thus the way the pdfs of elevation increments

change over scales [204].

The analysis presented above provides a way of quantifying the multi-fractality of

a signal via the scaling of its statistical moments. This statistical approach admits an

interesting geometrical interpretation in terms of characterizing the “roughness” of a

signal or its local singularity (degree of differentiability). A quantitative measure of

local singularity is given by the so-called Hölder exponent H (see equation (A.1) in

Appendix A). When more than one singularity is present in the signal, the spectrum

of singularities D(H) quantifies the range of singularities and the fractal (Hausdorff)

dimension of the support of these singularities. This spectrum of singularities D(H)

directly relates to the scaling exponent function ζ(q) via a Legendre transform (see

Appendix A).

Figure 7.15(C) shows the estimated D(H) curve for surface elevation increments.

Several observations are made from this figure. First, the most prevailing singularity

(peak of the D(H) curve) is equal to < H >= 0.55, which is almost identical to the

single Hurst exponent computed from the power spectral analysis. Second, the D(H)

curve indicates the presence of a wide spectrum of singularities from 0.1 to 0.9 (the

spectrum of Figure 7.15(C) is the left part of the full spectrum and due to the quadratic

form of ζ(q) the spectrum is symmetrical around the mean value of < H >). Recall

that regions in the elevation series where H ≈ 0.1 correspond to regions of abrupt

changes in elevation series (large spikes in elevation increments in Figure 7.3) while
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H ≈ 0.9 corresponds to regions of a gradual change in the elevation series (smaller

spikes in elevation increments). These spikes (local singularities) are interwoven in the

signal and D(H) characterizes their distribution. Third, it is observed that the fractal

dimension of the most prevailing singularity is D(< H >) = 0.8 implying a sparseness

in the surface elevation series consistent with the presence of periods of inactivity and

the non-zero estimated value of c0 in equation (7.14).
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Figure 7.15: (A) Log-log plots of higher-order structure functions M(q, r) vs r. The
power-law dependence documents the presence of scale-invariance in the elevation time
series h(t). (B) The dependence of scaling exponent function, ζ(q), on the order of
moments. The nonlinear dependence documents the presence of multifractal behavior
with c0 ≈ 0.192, c1 ≈ 0.58 (the most prevailing Hurst exponent in the series) and
c2 ≈ 0.171 (intermittency parameter). (C) Spectrum of Hölder exponents calculated
from the scaling exponent function using equation (A.4). The spread indicates the
variability in the singularity exponents found in the elevation time series.

As a final remark, we note that the scaling characterization presented above (via
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statistical moments or singularity spectrum) holds within a range of scales (see Fig-

ure 7.15(A)) whose upper bound coincides with the truncation parameter of the domi-

nant time scale of the system, i.e., periods of inactivity (ν̂ = 240 mins), providing thus

a much desired physical interpretation of the upper bound of the scaling regime.

7.6 Channel depths as a first-order control on depositional

systems

In this section, we interpret the results on the truncation scales of the fitted distributions

to the random variables that govern the surface evolution of depositional systems and

show that channel depths act as a first-order control in setting the truncation scales

(see Table 7.1 for a summary of parameters of fitted distributions). The observed

mean channel depth in the DB-03 experiment was reported to be of the order of 2 cm,

while the maximum channel depth was reported to be about 3 cm [217]. Specifically, the

maximum channel depth calculated from the topographic cross-sections (see Figure 7.16)

was 35 mm, which is equal to the estimated upper bound of both the magnitudes of

erosion and deposition (Ei and Di). This indicates that the maximum channel depth

acts as a first-order control on the truncation scale of pdfs of Di and Ei. Physically,

the maximum amount of deposition is governed by the maximum accommodation space

available, which in this experiment corresponds to the maximum channel depths. Thus,

we note that the maximum channel depths of the actively deforming surface provides

an indicative measure of the truncation parameter or the upper bound on the pdfs of

Di and Ei.

The time statistics are expected to be governed by the the time scale of avulsion of

the channels in the depositional systems. Mohrig et al. [234] define the characteristic

avulsion time scale TA in a depositional system as:

TA =
η

σA
, (7.15)

where η is the average depth of the channels and σA is the vertical aggradation rate

in the system. Substituting η = 2 cm and σA = 5 mm/hr [217], one can easily see

that the time scale that sets the scale of truncation of τi (ν̂i = 240 mins) is roughly

governed by the mean avulsion rate TA. One way to think about this result is to consider
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the processes that set the periods of inactivity in a depositional system. The smaller

values of τi arise in the system when that given location is occupied by a channel that

is not depositing or eroding sediment. However, longer periods of inactivity arise from

abandoning of a previously occupied channel location which leads to long periods of

neither deposition nor erosion happening at that location. Indeed, the results from the

best fit truncated Pareto distribution to the data of τi suggest that the larger values

of τi have an upper bound which is governed by the mean avulsion rate of the system.

However, in real systems this upper bound can be greater than the time scales of avulsion

of the mean channel depths owing to climatic/environmental forcing, as the statistics

of the experiment only reflect the autogenic effects on the periods of inactivity. It is

also interesting to note that Straub et al. [224] show that channel depths act as a

first order control on the stratigraphic architecture of channelized sediment transport

systems. Straub et al. [224] found that the degree of compensation present in alluvial

basins scales with the depths of the channels constructing the stratigraphy. Taken

together, our study and the study of Straub et al. [224] illustrate that channel depth is

a fundamental length scale for both the surface dynamics of deltas and the architecture

of deltaic stratigraphy.

The time interval demarcating the stratigraphic deposits was documented to have a

truncated Pareto distribution (see Section 7.4). The best fit truncation parameter was

found to be ν̂ ′ = 320 mins with a tail index of β̂′ = 0.7. The time scale of truncation

corresponds to the avulsion time scale of a 2.7 cm deep channel (using equation (7.15)),

which corresponds roughly to the deepest channels encountered during the experimental

run. A heavy-tailed distribution for τst with a tail index less than 1, introduces a bias

into the estimated deposition rates and leads to the so-called “Sadler” effect [63, 193].

Figure 7.17 shows the growth of the sediment surface elevation of the stratigraphic col-

umn with respect to time. As discussed in [193], the heavy-tailed behavior of “hiatuses”

or the time interval demarcating the stratigraphic columns causes a sub-linear growth of

the sediment surface elevation for time scales lesser than the truncation in the pdf of τst

with the scaling exponent equal to the tail index of τst (β̂′ = 0.7). For time scales larger

than ν̂ ′, the sediment surface elevation grows linearly in time, indicating that there is

no bias in the estimated deposition rates. Normalizing the sediment surface elevation

increments with the time scale at which the process is observed leads to the estimated
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Figure 7.16: Elevation cross-sections showing the deepest channels in the system at three
different time steps during the experimental run. The 35 mm deep channel highlighted
in the middle panel was the deepest channel that appeared during the experimental run.

depositional rates’ dependence on time. It is easy to see that the scaling of the observed

deposition rates depends on the tail index of the distribution of τst, where the estimated

deposition rates decay with a power law exponent of β̂′ − 1 = −0.3 until the time scale

of truncation of τst and beyond the the truncation scale ν̂ ′, the estimated deposition

rates do not depend on the time scale of observation. Our experimental data confirm

the hypothesis of Schumer and Jerolmack[193] that the bias in estimated deposition

rates does indeed arise from heavy-tailed “hiatuses”. In the case when the heavy-tailed

hiatuses (τst) arise from heavy-tailed periods of inactivity (τi), our analysis shows that

the degree of bias in the estimated deposition rates (which can be calculated by the

degree to which sediment surface elevation deviates from linear growth) can lead to the

estimation of the tail-index of the hiatuses. Moreover, the truncation scale of the pdf

of hiatuses can be estimated from the avulsion time scale of the deepest channel in the

system.

The scaling regime of the multi-fractal behavior reported in Section 7.5 was from 2

mins to 256 mins. The lower bound on this scaling regime corresponds to the temporal
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resolution of the data collected while the upper bound on this regime corresponds to the

truncation parameter of the periods of inactivity (τi). This indicates that the scaling

regime of the surface elevation time series can be derived from the physical controls of

the system as the upper bound on the scaling regime is set by the time scale of avulsion

of the mean channel depth.
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Figure 7.17: Plot showing the sediment surface elevation of the recorded bed thickness
as a function of time on log-log scale. The scaling of the sediment surface elevation
shows the effect of heavy-tailed “hiatuses” with a slope of β′ = 0.7 until around the
time scale of truncation of pdf of τst. For times larger than the scale of truncation, the
sediment surface elevation scales linearly with time. The above plot when normalized
with the time scales of observation leads to the estimated deposition rate dependence
on time (Sadler effect).

7.7 Modeling of surface evolution and sediment surface

elevation of stratigraphic column

In this section, we present some preliminary thoughts on modeling depositional systems

using continuum models which are consistent with the heavy-tailed statistics docu-

mented in the previous sections. Recently, modeling earth-surface processes that pos-

sess variability over a large range of space-time scales and exhibit heavy-tailed statistics

has received considerable attention [88, 162, 41, 11, 3, 235, 49, 236]. In a recent study,

Voller and Paola [6] acknowledged the deviation of fluvial profiles from ones predicted
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by classical diffusion and proposed the exploration of fractional diffusive model to de-

scribe the observed steady-state fluvial profiles in a depositional system. However, it is

important to note that the underlying assumption of the fractional diffusive model is

that the transport distances of sediment particles along the flow paths in depositional

systems is heavy-tailed (see [41], [49] and [11] where the heavy-tailed nature of sediment

transport distances are shown to result in a fractional diffusive model), for which we do

not have direct experimental evidence. However, our results do indicate that the periods

of inactivity are heavy-tailed and this needs to be taken into account while modeling

the surface dynamics of depositional systems.

The classical diffusion equation has been used to model the surface dynamics of

depositional systems [237, 16, 225]. The underlying assumptions of the classical diffusion

equation are thin-tailed periods of inactivity and thin-tailed transport distances for

sediment particles and the governing equation for the elevation evolution at any point

is given by [21]:
∂h

∂t
= D

∂2h

∂x2
− σA (7.16)

where h is the surface elevation, D is the diffusivity coefficient, σA is the net aggradation

rate and x is the distance along a flow path. A pure power-law, heavy-tailed pdf for

the periods of inactivity without any truncation leads to a time-fractional diffusion

equation which describes the evolution of surface elevation in time [172, 188]. However,

our experimental results indicate that the periods of inactivity are heavy-tailed with an

upper bound equal to the avulsion time scale of the mean channel depth. Truncated

power-law pdfs of periods of inactivity can be modeled using “tempered anomalous

diffusion” equations where the power law pdf of periods of inactivity is described by

tempered stable pdfs [238]. Tempered stable pdfs were proposed in [239] and [240] as

a smoother alternative to the truncated heavy-tailed pdfs which have a sharp cutoff.

In this case, the truncation is not assumed to be a fixed threshold but is assigned an

exponential tempering of rate λ where the pdf has a power-law decay till a particular

value and beyond that given truncation value the pdf decays exponentially. Assuming

tempered stable pdfs of periods of inactivity and thin-tailed pdfs of transport distances

of sediment particles, the governing equation that describes the evolution of the surface
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elevation can be shown [238] to be given by:

∂h

∂t
+ e−λt ∂

β

∂tβ

(
eλth

)
− λβh = D

∂2h

∂x2
− σA (7.17)

where x is the distance along the flow path, β < 1 is the tail index of periods of inactiv-

ity, D is diffusivity and λ is the rate of exponential tempering. The rate of exponential

tempering, λ, is equal to the inverse of the mean of the truncation parameter which is

governed by the avulsion time scale of the mean channel depth in systems whose dy-

namics are set by purely autogenic processes (like the experimental arrangement studied

here). However, it is important to note that the above equation is valid only when the

tail index β of periods of inactivity is less than 1. In the experimental arrangement, the

estimated tail index is β = 1.14 and the thin-tailed assumption of transport distances

withstanding, equation (7.16), and not equation (7.17), will describe the dynamics of

delta evolution. In systems which have tail index of the periods of inactivity less than 1,

equation (7.17) describes the dynamics of evolution of the deltaic surface. Note that all

the parameters of equation (7.17) are set by physical processes that govern the evolution

of the deltaic surface: β is the tail index of the periods of inactivity, λ is set by the

avulsion time scale of mean channel depths of the system, and D is a measure of the

spread of the transport distances of sediment particles. In the case that the transport

distances of sediment particles are heavy-tailed with a tail index of κ < 2, the governing

equation for surface elevation needs to be modified by replacing the ∂2/∂x2 operator

with a fractional ∂κ/∂xκ operator. The nature of the distribution of transport distances

of sediment particles in a fan-delta system is a subject that needs further study.

Let us denote by S(t) the sediment surface elevation of the stratigraphic column,

i.e., the summation of all bed thicknesses recorded until clock time t has elapsed, given

by [193]:

S(t) =

Nt∑

i=0

dst(i) (7.18)

where dst(i) is the bed thickness recorded and Nt is the number of stratigraphic strata

recorded in a given time interval [0, t]. [193] derive and describe the governing equation

for the location of the sediment surface elevation, S(t), of the stratigraphic column

in the case when heavy-tailed hiatuses are present in the system. In Section 7.4 we

provided evidence for the existence of heavy-tailed hiatuses (τst) and the exponential
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distribution of the bed thickness (Dst). These two findings together lead us to the

following governing equation for the location of sediment surface elevation:

∂S

∂t
+ e−λ′t ∂

β′

∂tβ′

(
eλ

′tS
)
− λ′

β′

S = −V ∂S
∂z

+D′∂
2S

∂z2
(7.19)

where S is the sediment surface elevation, β′ is the tail index and λ′ is rate of the

exponential tempering of the hiatuses τst, V is the average rate of accumulation, D′

is the diffusivity coefficient which describes the spread of accumulation rate around its

mean and z is the vertical coordinate measured in the direction of the stratigraphic

column. The tail index of τst which was found to be less than 1 and the exponential

bed thickness distribution call for a tempered anomalous diffusion equation to describe

the evolution of sediment surface elevation of the stratigraphic column. The governing

equations in the case of constant accumulation rates and power-law, heavy-tailed pdfs

without truncation are discussed in [193].

7.8 Conclusions

In this chapter, we used high resolution temporal data collected from a Delta Basin

experiment conducted at the St. Anthony Falls Laboratory, University of Minnesota to

fully characterize the statistics of surface elevation dynamics in depositional systems.

The following conclusions were drawn from the present study:

1. We showed that the magnitudes of surface elevation increments, deposition (Di)

and erosion (Ei), are well approximated by truncated Pareto distributions where

the upper bounds in both cases are governed by the maximum depths of the

channels on the actively deforming surface of the system.

2. The magnitudes of depositional events (De) and erosional events (Ee), which were

defined as the random sum of the magnitudes of elevation increments over their

respective durations of deposition (τd) and erosion (τe), were found to be well

described by a truncated Pareto distribution with a thinner tail than that of Di

and Ei, indicating that the random variables which govern the stratigraphic col-

umn thickness need not always reflect the heavy-tailed nature of surface elevation

dynamics.
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3. The periods of inactivity (τi), which were shown to be the dominant time scale of

the system, were found to be well approximated by a truncated Pareto distribution

whose upper bound coincides with the avulsion time scale of the mean channel

depth, thus allowing for a physical interpretation of the fitted parameters.

4. The hiatus lengths (τst) or the time intervals demarcating the stratigraphic de-

posits were shown to carry the signature of the heavy-tailed periods of inactivity

and were found to be well approximated by a truncated Pareto distribution with

a tail index of β̂′ = 0.7 and upper bound which corresponds to the avulsion time

scale of the deepest channels in the system. The implications of heavy-tailed

hiatuses for the estimated rate of deposition and sediment surface elevation were

discussed and experimental evidence for the hypothesis of Schumer and Jerolmack

[193], that the bias in the estimated deposition rates arise from heavy-tailed hiatus

lengths, was provided.

5. It was shown that the bed thickness or the thickness of the preserved stratigra-

phy (Dst) is well approximated by an exponential distribution, indicating that

the heavy-tailed nature of surface dynamics is apparently not preserved in the

stratigraphic column.

6. Preliminary thoughts on modeling surface dynamics using non-local theories using

fractional calculus were presented. It was shown that the governing equations for

the surface elevation (h(t)) and sediment surface elevation (S(t)) of the strati-

graphic column can be described by tempered anomalous diffusion equations [238]

where the time-fractional derivative captures the heavy-tailed nature of the peri-

ods of inactivity and the hiatus lengths, respectively.

7. Finally, it was shown that all the truncation scales on the random variables studied

are set either by the channel depths (space statistics) or the characteristic avulsion

time scales of the channels (time statistics), indicating that channel depths act as a

first-order control on the structure of surface dynamics and preserved stratigraphy

in depositional systems.



Chapter 8

Relating Earth-surface dynamics

to the preserved stratigraphy: Is

the tale in the tails?

The accumulation of sediment, even in strongly net depositional environments, is an

unsteady process [218] and in most environments, sedimentation and erosion rates vary

over a wide range of temporal and spatial scales [241, 53, 63]. Changes in sedimen-

tation/erosion rates, and in particular transitions between erosion and deposition, are

often associated with lateral and vertical changes in the texture of sedimentary deposits.

This texture in turn results from spatial changes in grain size of deposited particles and

typically marks stratal boundaries. In one (vertical) dimension, the intervals between

these boundaries define bed thickness, i.e., the thicknesses of individual strata. In the

common case where change between erosion and deposition is associated with migrat-

ing topography, one would expect some relation between the statistical properties of the

topography and those of the preserved beds. The purpose of this study is to investigate

this relationship.

Over the past thirty years studies related to the generation of stratigraphy in one

dimension have primarily focused on quantifying the “completeness of time” preserved

in the stratigraphic record. This line of research initiated with a paper by Sadler [63]

who found that the deposition rate decreases as a power law function of the interval of

149
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time over which deposition rate is measured. This simple yet powerful observation moti-

vated several studies on the statistical structure of surface elevation increments as they

pertain to the construction of 1D stratigraphic columns [242, 225, 243, 244, 193], mainly

using 1D stochastic diffusion models of sedimentation. While these studies produced

significant advances in our understanding of how time is recorded within stratigraphy,

questions about the distribution of preserved bed thickness remain: what dictates the

distribution of bed thicknesses preserved in stratigraphy and how do measurements of

bed thickness (simple to obtain in comparison to measurements of deposit age) relate

to the nature of the surfaces that created them?

Several recent studies suggest that the shape, extent, and distribution of stratal

boundaries are not merely functions of instantaneous paleo-topography, but can be

quantified as functions of three characteristics of the geomorphological system: 1) the

statistics describing the time-variant topography of an actively changing surface, 2) the

kinematics by which the surface is changing, and 3) the rate of net deposition [60, 216,

61]. While this formulation for quantifying the architecture of stratigraphy is becoming

increasingly accepted, we still lack predictive methods to reconstruct surface topography

from preserved stratigraphy, with only a few notable exceptions [245, 246, 247]. The

construction of such inverse predictive methods has the potential to unlock paleo-surface

history stored in the stratigraphic record.

The seminal work by Kolmogorov [231] on the relationship between preserved bed

thicknesses and the distributions of the erosional and depositional events that form them

remains one of the most complete quantitative theories in stratigraphy. In this work,

Kolmogorov presented an analytical derivation of the distribution of bed thicknesses

and showed that it is a truncated distribution whose shape relates to the distribution

of depositional and erosional events in a given setting. In the Kolmogorov model, the

construction of stratigraphy is attributed to the summation of depositional and erosional

events. A stratigraphic section can be sub-divided into a series of beds, where a bed

is described as a package of sediment bounded above and below by surfaces of erosion

(Figure 8.1). This stochastic sequence of depositional (δhe > 0) and erosional events

(δhe < 0) produces a set of beds with varying degrees of stratigraphic completeness.

The frequency distribution of the depositional and erosional events, f (δhe), which was

assumed to be Gaussian in shape by Kolmogorov [231], spans over a range of positive
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and negative values with occasional extreme events on either side. As erosion removes

material from the stratigraphic record, the distribution of the preserved sequence of

beds, Dst, is truncated at zero leaving only positive values (Figure 8.2). Kolmogorov

showed that the probability density of preserved bed thickness, f (Dst), can be related to

the distribution of depositional and erosional events, f (δhe), by f (Dst) = f (δhe) /Kc,

where Kc is termed the Kolmogorov coefficient that takes a value between 0 and 1. The

dimensionless Kolmogorov coefficient represents the long-term fraction of depositional

events preserved in a given alluvial basin. Following this work, Dacey [248] proposed

a derivation relating the thickness of beds to incremental elevation changes. In this

work, Dacey provided a derivation for an exponential distribution of bed thicknesses

from exponentially distributed depositional and erosional increments.
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Figure 8.1: Schematic diagram illustrating the construction of a stratigraphic column
from elevation increments. Preserved stratigraphic beds occur in environments where
the long-term mean of the elevation increments, δhi(t), is positive. Beds in this study
are defined as depositional bodies bounded above and below by preserved erosional
surfaces.

As elegant as Kolmogorov’s [231] theory is, it is based on the statistics of erosional

and depositional events, not on the statistics of topography itself. Hence Paola and
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δh’(t)

Frequency

Dst

0

Figure 8.2: Kolmogorov’s model of truncated bed thickness distributions. In Kol-
mogorov’s model the frequency distribution, f (δhe), of both depositional and erosional
events spans a negative (erosion) to positive (deposition) range. Because erosion re-
moves material from the stratigraphic record, the resulting distribution of bed thick-
nesses spans only positive values and is thus a left-side truncated frequency distribution,
f (Dst) of bed thicknesses, and has a form that is related through the Kolmogorov co-
efficient to the positive-value side of f (δhe).

Borgman [13] proposed a method that directly linked preserved bed thickness to topog-

raphy. Their method yielded an analytical relation between the variance of topography

and the probability density function (PDF) of bed thickness, but only in the case when

net rate of deposition was zero, and only for exponential-type topographic PDFs. Our

specific goal in this chapter is to extend this line of work to the full range of topographic

PDFs and rates of net deposition, as a step toward advancing our quantitative ability

of inverting bed thickness statistics for information about paleotopography.

While only a few studies examine quantitatively the link between surface elevation

increments and bed thickness statistics, several field studies have examined the statisti-

cal distribution of preserved bed thickness. For example, Rothman et al. [249] presented

measurements of turbidite bed thicknesses and reported that these are well described

by a power law distribution, while data presented in [250] and [251] were best fit by

lognormal distributions. Critical to the discussion of bed thickness distributions is the
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definition of a bed itself. Spatial changes in the texture of sedimentary sections can re-

sult from a range of processes. For example, in environments with frequent alternation

between erosion and deposition, textural horizons bounding deposits are often associated

with unconformities (i.e., erosional boundaries) and the boundaries result from alterna-

tion of erosion and deposition. We term these beds “unconformity-bounded beds”. In

comparison, textural horizons bounding deposits of purely depositional flows are also

possible; for example, in purely depositional turbidity currents, beds are primarily as-

sociated with the stacking of coarse sediment from deposition by the body of one flow

on top of fine grain sediment deposited by the tail of a preceding turbidity current [e.g.,

252, 253, 254, 249, 255]. The differences between the two bed definitions above have

implications for how one inverts bed thickness distributions for paleo-surface dynamics.

The latter case, for convenience termed a “paraconformity-bounded bed”, bed thick-

nesses can easily be mapped to the elevation increments that formed them as the full

time sequence of elevations is preserved in the depositional record. The PDF of bed

thickness in the paraconformity-bounded case cannot differ from the PDF of elevation

fluctuations, so for instance a power law distribution of purely depositional turbidite bed

thicknesses implies a power law distribution of the size/duration of individual turbidity

current events. Other settings prone to the production of paraconformity-bounded beds

include regions with rapid lithification and high resistance to erosion, such as peritidal

carbonate settings [256]. The relationship between unconformity bounded beds and

the elevation fluctuations that formed them is more difficult to assess due to the re-

moval of sediment during incision. Several studies that define beds as deposits bounded

by erosional surfaces report exponential distributions for bed thicknesses in a range of

environmental settings and for a range of spatial scales [257, 258, 259, 260]. In the re-

mainder of this chapter we will explore only the unconformity-bounded beds and their

relationship to surface elevation increments.

While bed thickness measurements from stratigraphic records are ample and can be

used to characterize their probability distribution, measurements of the elevation incre-

ments or surface morphodynamics that created those bed thicknesses are rare at best.

This is in part due to the difficulty of obtaining time series of elevations long enough to

characterize large-magnitude, low-frequency events (e.g., avulsions). As such, we lack
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enough data from natural systems to determine even the general family (e.g., exponen-

tial, power law, etc.) of distributions that best describe elevation increments in alluvial

basins and other environments. It is noted that the Kolmogorov [231] model uses a

Gaussian distribution while the work of Dacey [248] uses an exponential distribution

for elevation increments to derive the distribution of the preserved bed thickness. How-

ever, several recent sediment transport studies have reported heavy-tailed distributions

for sediment transport and elevation fluctuations both in river morphodynamics and in

hillslope and coupled river-hillslope systems [11, 41, 88]. In this chapter we use data

from a physical experiment on a fluvial system in an experimental basin experiencing

relative subsidence to characterize the statistics associated with the fluvial dynamics oc-

curring over a range of time-scales and relate these surface statistics to the resulting bed

thickness distributions. During this experiment, elevation was monitored at a temporal

frequency comparable to the time-scale of the system’s “meso-scale dynamics” [53, 217]

and over a duration long enough to generate reliable statistics on the magnitude of

elevation increments. As shown in Chapter 7, the surface dynamics of aggrading deltas

are governed by heavy-tailed statistics. That study raised the question as to why so

many observations from field scale stratigraphy show exponential PDFs for bed thick-

ness despite the possible heavy-tailed statistics of surface topography. In this chapter we

further probe into this question and demonstrate via analysis of the experimental data

and extensive numerical simulations the reasons and conditions under which extreme

fluctuations in bed elevation series (e.g., abrupt and large erosional and depositional

events) do not get recorded in the stratigraphic record. We also provide a relationship

between the preserved mean bed thickness and the variability of the bed elevation in-

crements and show that this relationship remains robust under different probabilistic

structures of the alluvial surface dynamics. We propose the interquartile range (defined

as the difference between the 75th and 25th quartile of the bed elevation fluctuations)

as the proper measure of variability since the heavy-tailed power law distribution of

elevation increments suggests theoretical distributions for which the standard variance

(second moment around the mean) might not always be properly defined.
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8.1 Results from stochastic sedimentation models

8.1.1 Stochastic models for surface elevation evolution

The analysis of surface morphodynamics and the preserved stratigraphy statistics pre-

sented in the previous chapter suggest that heavy-tailed distributions of surface evolu-

tion do not necessarily translate to heavy-tailed distributions of bed thickness in strata.

How general is this result, and are there conditions in which heavy-tails in surface eleva-

tion increments can be transferred into the stratigraphic record? We explore these ques-

tions using a series of stratigraphic columns constructed from stochastically gen- erated

surfaces of sedimentation and erosion (referred to as “synthetic stratigraphic columns”).

Several studies have explored the relationship between stochastic models for surface evo-

lution and the synthetic stratigraphy that they generate [261, 260, 225, 262, 243], but

no study, to the best of our knowledge, has quantified the effect of heavy-tailed surface

elevation increments on the preserved stratigraphy. The advantages of constructing

preserved stratigraphic columns from stochastically generated surface elevation series

include the ability to explore many physical scenarios for which data are not available

and the ability to produce long time series where the shapes of resulting distributions

can be confidently interpreted. Such analyses allow us to examine the generality and

validity of inferences made from our experimental discretely sampled elevation time

series.

We use a 1D model of erosion and sedimentation based on a random-walk formula-

tion that assumes independent magnitudes of erosion and deposition. The magnitudes

of erosion and deposition, δhi(t), are assumed to be sampled from a symmetric dis-

tribution with thin-or heavy-tails. Specifically, given the concentrated mass at zero

(significant chance of having zero or close to zero magnitudes) found from the anal-

ysis of experimental data [263] we assume that the surface elevation increments, δhi,

come from either a Laplace distribution (in the case of thin-tails) or a double Pareto

distribution (in the case of heavy-tails). The Laplace distribution, also called a double

exponential distribution, is given by:

f (δhi) =
1

2b
exp

(
−|δhi − µ|

b

)
(8.1)

where b is the scale parameter of the distribution and µ is the location parameter (or
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the mean of the distribution). The double Pareto distribution is given by:

f (δhi) =





α µα

δhα+1
i

when δhi ≥ µ

α µα

2(2µ−δhi)
α+1 when δhi < µ

(8.2)

where µ is the mean of the distribution and α is the tail-index.

After generating time series of elevation increments resulting from the above two

1D random-walk models, local preserved minima can be identified and bed thicknesses

calculated. A summary of the statistics of preserved stratigraphic columns constructed

from the stochastically generated surface elevation series is presented in the next sub-

section.

8.1.2 Statistics of the Constructed Stratigraphic Columns

As a first step in quantifying the relationship between a parent distribution of elevation

increments, δhi(t), and preserved bed thicknesses, Dst, we compare the distribution of

beds constructed from symmetric, positive mean, thin-tailed distributions of elevation

increments (equation (8.1)) to those constructed from symmetric, positive mean, heavy-

tailed distributions of elevation increments (equation (8.2)) for a range of parameters

of these distributions. Examples of the distributions of δhi(t), Dst, τd, τe, δhe(t) associ-

ated with our thin-tailed and heavy-tailed elevation increments are shown in Figures 8.3

and 8.4. For all scenarios explored, we find that: (1) the distribution of Kolmogorov

events, δhe(t), show an exponential-type of decay in their tails (thin-tailed) irrespec-

tive of the nature of the distribution of elevation increments, δhi(t) (Figures 8.4(B)

and 8.4(D)), (2) the distributions of durations of depositional and erosional events (τd

and τe) are always well approximated by thin-tailed distributions, and (3) the resulting

bed thicknesses, Dst, are best described by exponential distributions (Figures 8.4(B)

and 8.4(D)). The outcome of our numerical experiments shows specifically how the pro-

cess of constructing stratigraphic beds from elevation fluctuations in net depositional

settings is associated with a filtering of the information contained within the tails of

elevation increments distributions.
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Figure 8.3: Comparison of results from (a, b) 1D numerical models of surface evolution
and resulting stratigraphy associated with exponentially distributed elevation fluctua-
tions and (c, d) power law distributed elevation fluctuations. (A) Input PDF of δhi(t)
generated from a Laplace distribution of elevation fluctuations with b = 4.1 and µ = 0.3.
(B) PDF of De

st shown in both semi-log and log-log plots. Linear decay of bed thick-
nesses in semi-log space suggests exponential distribution. (C) Input PDF of δhi(t)
generated from a double Pareto distribution of mean = 0.3 and α = 1.5. (D) PDF
of De

st shown in both semi-log and log-log plots. Linear decay of bed thicknesses in
semi-log space suggests exponential distribution. Distributions for both scenarios were
generated from model time series with 100,000 elevation increments.
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distribution of elevation increments presented in Figure 8.3(C). (D) Distribution of Kol-
mogorov elevation events, δhe(t), and resulting bed thicknesses, De

st.
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8.2 Effect of extremes on the stratigraphic bed thicknesses

As was shown in the previous section, the heavy-tailed statistics of surface evolution

do not always get preserved in the bed thickness statistics. In this section, we will

probe further into how the interplay between the probabilistic structure (i.e., thin-tailed

versus heavy-tailed) of the magnitudes of deposition and erosion and the durations of

depositional and erosional events effect the distribution of preserved bed thickness. In

the remainder of the chapter, for the simplicity of notation, we denote any two random

variables to have a symmetric distribution if they have the same nature of decay in their

tails (i.e., exponential, thin- tailed versus power law, heavy-tailed).

8.2.1 Influence of Symmetry of the Topographic PDF

An interesting characteristic of both the experimental data and the stochastic surface

elevation models described so far is the symmetrical nature of the distributions of the

erosional and depositional events, δhe(t), and the durations of depositional and ero-

sional events, τd and τe. To analyze the importance of this symmetry for the resulting

distributions of bed thicknesses, we compare distributions of bed thickness that result

from symmetrical and asymmetrical parent distributions of magnitudes of deposition

and erosion. In this exercise, rather than constructing synthetic stratigraphic columns

from random-walk models of surface elevation increments, we directly generate beds

using the difference between the two random variables, depositional events (De) and

erosional events (Ee), which are in effect random sums of elevation increments, Di and

Ei:

D̂e
st =

τd∑

i=1

Di −
τe∑

i=1

Ei (8.3)

It is worth noting that the bed thicknesses calculated using equation (8.3) are an approx-

imation of the bed thicknesses constructed from the surface evolution, as this equation

takes into account only the erosional thinning of depositional events by the next sub-

sequent erosional event, and not the erosional thinning that could possibly occur due

to large magnitude events that could have occurred later in a time series. While equa-

tion (8.3) produces only an approximation of bed thickness distributions resulting from

a random-walk model of surface elevation evolution, the advantage of using it is that it
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allows independent control of the distributions of Di, Ei, τd, and τe. In this subsection,

we investigate the influence of the symmetric versus asymmetric nature of the distribu-

tion of elevation increments and the distributions of the durations of depositional and

erosional events on the resulting bed thickness distribution. First, we use equation (8.3)

to generate distributions of bed thickness for scenarios in which both elevation incre-

ments, δhi(t), and the durations of depositional and erosional events, τd and τe, have

symmetrical distributions, as has been the case for our experimental data and the nu-

merical simulations. Our simulation results demonstrate that, regardless of the shape

of the input distributions for δhi(t) and τd, τe (i.e., thin-tailed versus heavy-tailed), the

bed thickness distributions computed using equation (8.3) are exponentially distributed

so long as the parent distributions are symmetrical. An example of this is shown in

Figure 8.5(B) where we generated the random variables Di and Ei from symmetric

Pareto distributions and generated the random variables τd and τe from symmetrical

exponential distributions.

Next we examine the influence of asymmetry in the distributions of Di and Ei on

the resulting distribution of bed thickness while keeping the τd and τe distributions sym-

metrical. Interestingly, as the asymmetry of the Di to Ei distributions increases, the

resulting distribution of bed thickness becomes increasingly weighted toward extremes

(approaches a power law in shape). An extreme example of this finding is shown in Fig-

ure 8.5(C) where we generated magnitudes of deposition, Di, from a Pareto distribution

with a tail index of 0.75 (very heavy-tail) while generating magnitudes of erosion, Ei,

values from an exponential distribution with a scale parameter equal to 5 and the du-

rations of depositional and erosional events from exponential distributions with a scale

parameter of 10. The result is a heavy-tailed bed thickness distribution. We assert

that this observation represents an important clue as to why bed thickness distributions

generated from heavy-tailed surface increments are often exponentially distributed. In

systems with heavy-tailed surface increments that have a symmetric distribution, the

heavy-tails from one side of the distribution (erosional events) effectively cancel out the

heavy-tails from the other side of the distribution (depositional events), thus resulting

in a derived distribution that is thin-tailed. Alternatively, increasing the asymmetry

of the parent distribution reduces the ability for large magnitude but infrequent ero-

sional increments to balance out large magnitude but infrequent depositional increments,
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Figure 8.5: Bed thickness distributions generated from individual bed thicknesses calcu-
lated using equation (8.3). (A) PDF of bed thicknesses generated using equation (8.3)
with input parameters for Di, Ei, τd and τe set to equal estimated parameters from
DB-03 experiment. (B) PDF of bed thicknesses generated from symmetric distribu-
tions of both Di/Ei and τd/τe. Random values of Di and Ei are described by a Pareto
distribution with tail-index of 1.5. Mean of combined distribution of depositional and
erosional increments, δhi(t) is 10. Random values of τd and τe are described by an
exponential distribution with mean of 10. (C) PDF of bed thicknesses generated from
asymmetric distribution of Di/Ei and symmetric distribution of τd/τe. Random values
of Di are described by a Pareto distribution with tail-index of 0.75 while values of Ei are
described by an exponential distribution with 1/λ = 5. Mean of combined distribution
of depositional and erosional increments, δhi(t) is 10. Random values of τd and τe are
described by an exponential distribution with 1/λ of 10. (D) PDF of bed thicknesses
generated from symmetric distribution of Di/Ei and asymmetric distribution of τd/τe.
Random values of Di and Ei are described by a Pareto distribution with tail-index of
1.5. Mean of combined distribution of depositional and erosional increments, δhi(t) is
10. Random values of τd are described by a Pareto distribution with tail-index of 1.75
while values of τe are described by an exponential distribution with µ of 10.
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therefore leading to heavy-tailed bed thickness distributions.

In both the experimental data set and the stochastic surface elevation models we find

that the durations of depositional and erosional events are well described by thin-tailed

distributions. We do not prescribe τd and τe in our 1D stochastic surface elevation

models, but rather they are determined by our assumption of independence between

magnitudes of deposition and erosion δhi(t) (can be shown theoretically to follow a

negative Binomial distribution). With this information in mind, we explore the impli-

cations of asymmetry in the distributions of τd and τe. Similar to the effect of increasing

the asymmetry of the δhi(t) distribution, we find that as the asymmetry of τd to τe dis-

tributions increases, the resulting distribution of bed thicknesses has more weight in

the extremes (approaches power law in shape). An extreme example of this is shown

in Figure 8.5(D) where we sampled durations of depositional events, τd, from a Pareto

distribution with a tail index of 1.75 while sampling the durations of erosional events,

τe, from an exponential distribution with a scale parameter equal to 10 and magnitudes

of deposition and erosion from symmetrical Pareto distributions with a tail index of 1.5.

In Table 8.1 we summarize our observations on the link between symmetry in the distri-

butions that describe the surface dynamics and the resulting shape of the bed thickness

distribution.

Finally, to test the accuracy of the approximation used in equation 8.3 to describe

the preserved bed thicknesses, we generated random variables Di, Ei, τd, and τe using

distributions that described the surface evolution in the DB-03 experiment. We used

Pareto distributions for Di and Ei with tail indexes α1 and α2 equal to 2.6 and 1.1,

respectively and exponential distributions for τd and τe with 〈τd〉 = 2.6 min and 〈τe〉 =

2.2 min. The bed thicknesses calculated using these parameters was found to be well

approximated by an exponential distribution, with 〈D̂e
st〉 of 6.2 mm, slightly less than the

value we estimated for the DB-03 experiment (Figure 8.5(A)). This agreement confirms

the validity of our stochastic simulations for the purpose of studying how the interplay

between depositional and erosional events gets recorded in the preserved stratigraphy.
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Asymmetric Di and Ei Distributions
Symmetric Di

and Ei distribu-
tions

Both Distributions are
Thin-tailed

Both Distributions are
Heavy-Tailed

Di Distributions Heavy-
Tailed, Ei Distribution
Thin-Tailed

Symmetric τd and τe Distribu-
tions

Dst: Thin-tailed Dst: Thin-tailed Dst: Between thin and
heavy-tailed

Dst: Heavy-tailed

Asymmetric τd and τe Distri-
butions. Both distributions
are thin-tailed

Dst: Thin-tailed Dst: Thin-tailed Dst: Between thin and
heavy-tailed

Dst: Heavy-tailed

Asymmetric τd and τe Distri-
butions. Both distributions
are heavy-tailed

Dst: Between
thin and heavy-
tailed

Dst: Between thin and
heavy-tailed

Dst: Between thin and
heavy-tailed

Dst: Heavy-tailed

Asymmetric τd and τe Dis-
tributions. τd distribution
heavy-tailed, τe distribution
thin-tailed

Dst: Heavy-tailed Dst: Heavy-tailed Dst: Heavy-tailed Dst: Heavy-tailed

Table 8.1: Regime Matrix Illustrating Relationship Between Shape of Di, Ei, τd, and τe Distributions and Resulting
Dst Distribution
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8.2.2 Mapping Surface Variability to Bed-Thickness Statistics

In previous sections and chapter 7, we presented data from physical and numerical

experiments that indicate that the statistics describing the preserved bed thicknesses

generally do not record the signature of heavy-tailed surface evolution statistics. While

information on the nature of the distributions tail (thin-tailed versus heavy-tailed) of

surface evolution events may be filtered from the stratigraphic record, in this section

we demonstrate variability of elevation increments, δhi, relative to the mean deposition,

〈δhi〉, influences the mean of preserved bed thicknesses, 〈Dst〉. This was demonstrated

analytically by Paola and Borgman [13] for the case of zero net deposition and thin-

tailed elevation statistics; here we generalize that result. Specifically, we are interested

in relating the variability and mean of elevation increment distributions to the statistics

describing the preserved bed thicknesses. One common measure of a distribution’s

variability is the interquartile range, IQR, which is equal to the difference between

the third and first quartiles of the distribution. To compare the spread of the parent

distribution to its mean we examine the nondimensional interquartile range coefficient,

Φδhi
:

Φδhi
=
IQRδhi

〈δhi〉
=
F−1

δhi
(0.75) − F−1

δhi
(0.25)

〈δhi〉
(8.4)

An additional metric that compares a distributions variability to its mean is the coeffi-

cient of variation, CVδhi
, defined as:

CVδhi
=

〈(δhi − 〈δhi〉)2〉1/2

〈δhi〉
(8.5)

An advantage of the interquartile range over the coefficient of variation is that the in-

terquartile range of all thin-tailed and heavy-tailed distributions formally exists, while

the standard deviation, σ, does not formally exist for heavy-tailed distributions with a

tail index less than 2. We note, though, that for any finite sequence of random numbers

generated from a thin or heavy-tailed distribution, a standard deviation can always be

calculated. However, for thin-tailed random variables, the calculated standard deviation

converges to a fixed value with an increase in the sample size while, for heavy- tailed

random variables with tail index less than 2, the calculated standard deviation diverges

with increasing sample size, casting uncertainty in inferences from finite size data sets.
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With this in mind, we generated a sequence of synthetic stratigraphic columns, as out-

lined in section 8.2.1, constructed from elevation increments that span a range of values

of the non-dimensional interquartile range (Φδhi
). For each constructed stratigraphic

column we tracked the interquartile range of the distribution of elevation increments,

the mean of the elevation increments 〈δhi〉, and the estimated mean of the preserved

bed thicknesses, Dst, which fully characterizes the distribution of bed thicknesses since

they are well described by an exponential distribution.

Figure 8.6 shows how the non-dimensional bed thickness (calculated by taking the

ratio of the estimated mean bed thickness to the background net depositional rate,

〈Dst〉/〈δhi〉) varies as a function of the non-dimensional interquartile range of the dis-

tribution of elevation increments (Φδhi
) for synthetic stratigraphic columns created by

both thin-tailed (exponential) and heavy-tailed (power law) elevation increment distri-

butions. Note that since both axes of Figure 8.6 are non-dimensional, one can compare

systems of different absolute scale, but similar in their ratio of surface variability to mean

background deposition rate. Each data point on Figure 8.6 represents the outcome of a

single 1D stochastic model of sedimentation as outlined in section 8.1. Utilizing symmet-

rical distributions and user specified values of the non-dimensional interquartile range

of the distribution of elevation increments, we constructed the preserved bed thickness

distributions from which we estimated the mean preserved bed thickness, 〈Dst〉. For

time series constructed with up to 100, 000 increments (the maximum time series length

generated in this analysis) we noted no difference in the shape of the relationship be-

tween the non-dimensional bed thickness and the non-dimensional interquartile range of

the distribution of elevation increments. Interestingly, we found that the data from the

DB-03 experiment nicely plot on the curve computed from the 1D stochastic models. As

the coefficient of variation (CV ) is a more commonly used metric to compare a distribu-

tion’s variability to its mean we also checked for the dependence of the non-dimensional

bed thickness versus the coefficient of variation of the surface elevation increments, while

acknowledging that the coefficient of variation would not formally exist for heavy-tailed

distribution of elevation increments.

As the non-dimensional interquartile range of the distribution of elevation increments

increases from a minimum possible value of zero, the non-dimensional bed thickness de-

creases until it reaches a global minimum of approximately 7 at a value of Φδhi
∼ 1.4.
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Further increases in the non-dimensional interquartile range of the distribution of ele-

vation increments result in an increase of the non-dimensional bed thickness with the

rate of increase characterized by a slope equal to ∼ 1.4. In summary, Figure 8.6 illus-

trates that a large value for the mean of a bed thickness distribution relative to the

background deposition rate can result from either extremely low or extremely high vari-

ability in elevation increments relative to the background drift. On the left-hand side of

this relationship in Figure 8.6 (Φδhi
< 1.4), increasing the variability of elevation incre-

ments, for a given background drift, decreases the mean bed thickness in the resulting

stratigraphic column. On this side of the plot the variability of elevation increments

is small relative to the mean background drift, thus erosional events are rare and the

stratigraphic column is constructed from a broad distribution of thick deposits. In other

words, increasing the surface variability tends to break thick deposits into smaller units

reducing thus the mean of the preserved bed thicknesses. On the right-hand side of

this relationship in Figure 8.6 (Φδhi
> 1.4) increasing the variability of elevation incre-

ments, for a given background drift, increases the mean bed thickness in the resulting

stratigraphic column. On this side of the plot the variability of elevation increments is

large relative to the mean, thus most sediment that is deposited is eventually removed

by future erosional events and the stratigraphic column is constructed from sediment

that is reworked by a broad distribution of erosional events.

Analysis of the Kolmogorov event, δhe(t), distributions provides additional insight

into the processes responsible for the shape of the relationship between the non-dimensional

interquartile range of the distribution of elevation increments and the non-dimensional

bed thickness. All model runs for Figure 8.6 had symmetrical distributions of eleva-

tion increments. Insert plots within Figure 8.6 define the shape of the Kolmogorov

event’s distributions for three values of the non-dimensional interquartile range of the

distribution of elevation increments. For conditions where Φδhi
> 1.4 the resulting dis-

tribution of Kolmogorov events is approximately symmetrical in form. As the value of

non-dimensional interquartile range of the distribution of elevation increments, Φδhi
,

decreases below a value of 1.4, the distribution of the Kolmogorov events becomes in-

creasingly asymmetric with more weight on the positive (De) side of the distribution

than the negative end (Ee) of the distribution.

For all conditions analyzed, the mapping of elevation increments to Kolmogorov
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events is associated with a significant thinning of the tail of the distribution. This results

in depositional and erosional events (De and Ee) that are well described by thin-tailed,

exponential distributions. This allows us to compare the estimated scale parameters of

the depositional and erosional events, µ̂De and µ̂Ee , respectively. For conditions where

Φδhi
< 1.4, we find that the estimated mean of the depositional events is much larger

than the estimated mean of the erosional events (µ̂De ≫ µ̂Ee) and thus the distribution

of the Kolmogorov events is asymmetric. However, as the value of the non-dimensional

interquartile range of the distribution of elevation increments increases, the difference

between the estimated means of the depositional and erosional events decreases and as

a result the mean of the preserved bed thicknesses (µ̂Dst) decreases. This is summarized

in the following scaling relationship:

µ̂Dst ∼ µ̂De − µ̂Ee (8.6)

The decrease in the estimated mean of the preserved bed thicknesses continues until

the distributions of the depositional and erosional events are roughly symmetrical. At

this location, the δhe(t) distribution can be approximated as a Laplace distribution.

We note that the interquartile range of a Laplace distribution (see equation 8.1) is

equal to 2bln(2) or approximately 1.4b, where b is the scale parameter of the Laplace

distribution. We observe that the global minimum in the values of non-dimensional bed

thickness occurs at a value where the background net depositional rate (〈δhi〉) is equal

to the scale parameter (b) of the best fit Laplace distribution of the Kolmogorov events

suggesting that the filtering of information contained within the tails of an elevation

increments distribution also strongly influences the relationship shown in Figure 8.6.

Above the value of Φδhi
∼ 1.4 the Kolmogorov events’ distribution is well described by a

Laplace distribution (i.e., symmetrical distribution of depositional and erosional events),

and increasing the value of the non-dimensional interquartile range of the distribution

of elevation increments results in an increase of the non-dimensional bed thickness at

a rate characterized by a slope approximately equal to 1.4 (or approximately equal to

2ln(2)). In essence, for symmetrical elevation events, an increase in the variability of

elevation events always causes an increase in the mean bed thickness, similar to the

finding by Paola and Borgman [13].

Finally, to test the sampling interval scale-dependence of the trend observed in
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Figure 8.6, we generated elevation time series as discussed above and calculated the

non-dimensional interquartile range of the distribution of the elevation increments and

the non-dimensional bed thickness at the finest resolution. We then subsampled the

elevation time series, extracting every nth elevation measurement, and recalculated the

non-dimensional interquartile range of the distribution of the elevation increments and

the non-dimensional bed thickness of the new subsampled elevation time series. We find

that the non-dimensional interquartile range of the distribution of the elevation incre-

ments and the non-dimensional bed thickness from the subsampled elevation time series

plots on the trend that was generated from the elevation time series considered at the

finest resolution. In other words, we find that the relationship established in Figure 8.6

is robust to changes in scales of measurement of the surface elevation increments.

8.2.3 Implications for Stratigraphy

Analysis of the DB-03 experimental data and the1D stochastic models that gener-

ated synthetic stratigraphy suggests a predictable relationship between the variabil-

ity in topography and the mean bed thickness of a stratigraphic column. Environments

with near-symmetric distributions of elevation increments (both thin- and heavy-tailed),

and near-symmetric distributions of periods of depositional and erosional events pro-

duce stratigraphic columns composed of exponentially distributed beds. The fact that

most reported unconformity-bounded bed thickness distributions are exponential sug-

gests that field scale distributions of elevation increments and periods of depositional

and erosional events are in fact often symmetrical. While yet untested, the rela-

tionship presented in Figure 8.6 might also aid in the analysis and identification of

paleo-environments. For example, suppose for the sake of argument that, for a given

background deposition rate the appropriately scaled variability in surface evolution of

braided rivers were greater than in meandering rivers. Then the preserved bed thick-

ness distributions generated from braided rivers would plot more toward the right-hand

side of Figure 8.6 compared to bed distributions resulting from meandering rivers. We

believe these questions pose an interesting line of investigation for future experimental

studies. Further questions which remain to be addressed include 1) the relationship

between the Kolmogorov definition of beds, defined as strata deposited between succes-

sive preserved erosional surfaces, and beds defined in outcrops as strata bounded above
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and below by distinct textural horizons. This might be achieved in controlled labora-

tory experiments where time series of elevation can be compared to spatially referenced

images of preserved physical stratigraphy. 2) What is the relationship between surface

variability and resulting bed-thickness statistics for systems with nested distributions

of surface topography. For instance, how do the PDFs of topographic fluctuations re-

late to bed thicknesses in avulsive river systems with river channel bottoms covered by

depth-limited dunes?

Finally, in our previous study on the statistics of surface dynamics in depositional

braided fluvial systems, Ganti et al.[263] found that several distributions associated

with surface dynamics follow truncated Pareto distributions. They reported that the

truncation scales for these distributions are set by the depths of channels constructing a

package of sediment and the time scale of avulsion associated with these channels. This

finding also has implications for the conversion of elevation increments to stratigraphic

beds thickness. The truncation at a scale associated with the roughness of the surface

topography essentially makes the tails of the distribution of elevation increments thinner

than the case where the distribution is not truncated. As a result, the distributions of the

Kolmogorov events and the preserved bed thickness that result from a truncated parent

distribution will have tails that exhibit faster decay (lesser weight in extremes) than

distributions arising from non- truncated parent distributions, adding to the prevalence

of exponential-like bed thickness distributions in the stratigraphic record.

All in all, then, we see two broad categories of bed creation in the stratigraphic

record. The first, which we believe is the most common, involves reworking of the

surface by a combination of upward and downward increments (deposition and erosion,

or “cut-and-fill”). We have shown here that this case is expected to produce exponential-

type (thin-tailed) bed thickness distributions regardless of whether the distributions of

the associated sediment surface dynamics are thin- or heavy-tailed. The second case is

that in which there is strong asymmetry between deposition and erosion. This could

mean that the depositional events are heavy-tailed and the erosional events thin-tailed,

for which we are not aware of any field examples; or more simply that the erosional

events are absent or negligible, for example at the distal end of the depositional system.

With no erosional modification, the beds are then a faithful record of the events that

produced them. This is the case studied, for example, by Rothman et al. [249], and
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here if the events have a heavy-tailed distribution then so will the deposits.

8.3 Conclusions

This study presents an extensive analysis of experimental and stochastically generated

surface morphology to quantitatively examine the relation between surface elevation

evolution and the resulting stratigraphy. The main results are summarized as follows:

1. Thin-tailed (e.g., exponential) bed thickness distributions result from heavy-tailed

surface evolution statistics, as evidenced from both the laboratory experimental

data and numerical simulations. We showed that this thinning of the tail of

the distribution occurs in environments where the distributions of the surface

elevation increments and periods of depositional and erosional events (τd and τe)

have positive means and are symmetric in shape.

2. Asymmetry in parent topographic PDFs results in bed thickness distributions

that carry some of the heavy-tailed statistics present in their parent distributions.

Truncation of the parent distribution tails due to depositional processes further

reduces the chance of occurrence of extremes in preserved bed thicknesses com-

pared to their parent distributions. The implication of this result adds to the

prevalence of exponential bed thicknesses as heavy-tailed distributions in nature

are often truncated at some scale.

3. The interquartile range (difference between the 75th and 25th quartiles) of the

surface elevation increments can serve as a predictor of mean bed thickness of

the stratigraphic deposit. This relationship holds for both thin and heavy-tailed

surface statistics and demonstrates that information related to the variability of

surface fluctuations is stored in the stratigraphic record.
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Figure 8.6: Model results documenting relationship between (A) Φδhi
and (B) CVδhi

for
surface elevation fluctuations and 〈Dst〉/〈δhi〉 generated from 1D synthetic stratigraphy
models with input PDF of δhi(t) generated from exponential distribution with λ = 1.0
are shown with black open circles, while 1D models with input PDF of δhi(t) generated
from Pareto distribution with α = 1.75 are shown with gray crosses. Gray open triangle
indicates relationship between data from DB-03 experiment. Insert plots illustrate shape
of Kolmogorov increments, δhe(t), and resulting bed thickness, De

st, distributions for
1D models with three Φδhi

values. Distributions displayed in insert plots resulted from
elevation increments, δhi(t) generated from Pareto distributions with α = 1.75.



Chapter 9

Kinematic controls on the

geometrical structure of the

preserved cross-sets

The architecture of stratigraphy is a function of three characteristics of depositional

systems: 1) the topography of an actively evolving surface, 2) surface kinematics of

topographic evolution, and 3) the rate of net deposition [216, 54, 217, 61]. As all

three of these properties are influenced by environmental conditions (e.g., climate and

tectonics), the architecture of stratigraphy contains information that could be used to

quantitatively reconstruct paleolandscape dynamics across many time scales [218, 53,

219]. Quantitative analysis of stratigraphy exposed in outcrops or imaged in seismic

data coupled to numerical models relating Earth-surface dynamics to the preserved

stratigraphy has blossomed in the last fifty years, initiating with the pioneering works by

Kolmogorov [231], Leeder [55] and Allen [62]. The general goal for many of these studies

was to develop tools to invert stratigraphic records for deciphering paleo-environmental

conditions.

Of the structures present in the stratigraphic record, the cross-stratified units formed

by migrating ripples and dunes are amongst the most commonly observed. Dunes and

ripples migrating on a bed leave a distinct signature in the stratigraphic record owing to

the size sorting of particles on the lee faces of the bed forms [264, 265, 266] and because

172
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scouring produces erosional surfaces that are preserved in the stratigraphic deposits

[267, 266]. The deposit that is preserved between two successive erosional surfaces is

called a set. The cross-stratification patterns depend on the movement of the bed forms,

the change in shape, and any change in the direction of travel of the bed forms [e.g.,

268]. Since, the geometrical structure of cross-stratified units (e.g., set thicknesses) can

be related to the water depth existing at the time of bed form migration [e.g., 269, 270],

data of stratigraphic deposits can be used to reconstruct paleochannel depth and width

[271].

The relationship between the geometry of bed forms and associated cross-stratification

has been a subject of qualitative [e.g., 270, 268] and quantitative analysis for many years

[e.g., 272, 13, 273, 274, 247, 267, 246]. The architecture of cross-stratified units com-

prises of the distribution of set thicknesses, and the length, slope and curvature of

the cross-sets. Of these, the most studied variable in the literature is the set thick-

ness. Paola and Borgman [13] developed an exact theory that relates the variability in

bed form heights to the distribution of the set thicknesses under zero net depositional

conditions. This theory was modified to the case where net deposition occurs and an

empirical relationship between the mean set thickness and the bed form geometry and

net aggradation rate was proposed [273]. Several experimental studies validated the

Paola-Borgman and the modified Paola-Borgman theories and quantified the role of net

aggradation rate and variability in bed form heights in controlling the set thicknesses

[274, 275, 247, 267]. Further, via a numerical model for bed form evolution, Jerolmack

and Mohrig [246] highlighted the importance of the competition between net aggrada-

tion rate and bed form migration rate on the resulting distribution of set thicknesses.

The controls on the length of the cross-sets were studied qualitatively [268] and quan-

titatively using experimental data [267]. Allen [268] stated that the length of bounding

surfaces of cross-sets formed by current ripples is about half the bed form wavelength,

which was later experimentally validated by Leclair [267].

Almost all studies to date have focused on the effect that migration and aggradation

rates have on the geometry of the cross-sets. Although the change in shape of the bed

forms has been thought to have an effect on the geometry of the cross-sets as early as

the work of Allen [268], very little quantitative or experimental insight has been gained

in this respect. In a recent study [276], the change in shape of the evolving bed forms
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was quantified by a vertical speed called deformation rate. The focus of our study is to

understand the effect of deformation on the architecture of stratigraphy and to develop

theoretical relationships between the surface kinematics of bed form evolution and the

geometrical structure of the cross-sets (in particular, the curvature of the cross-sets).

This chapter is structured as follows. In the next section, we develop the theoretical

relationships between the slope and curvature of the bounding surfaces of the preserved

cross-sets in terms of the surface kinematics of bed form evolution. In Section 9.2,

we describe the experimental setup and data of bed form evolution used in this study.

The analyses for characterizing the surface kinematics of bed form evolution and the

geometrical structure of the preserved stratigraphy for the experimental data are pre-

sented in Sections 9.3 and 9.4, respectively. In Section 9.5, we validate the proposed

theoretical relationships between surface kinematics of bed form evolution and the ge-

ometrical structure of the preserved stratigraphy using the experimental data collected

under zero net depositional conditions. Finally, discussion and conclusions are presented

in Sections 9.6 and 9.7, respectively.

9.1 Theoretical development

Consider a train of bed forms whose 1D elevation in the stream wise direction x as

it evolves over time t is given by η(x, t). The surface kinematics of the evolution of

this train of bed forms can be characterized in terms of the rate of migration of the

bed forms and the change in shape of the bed forms as they migrate (see Figure 9.1).

McElroy and Mohrig [276] proposed a unifying theoretical framework to investigate the

evolution of sandy bed rivers. They proposed that the bed is appropriately described

by a kinematic wave with a source term given by:

∂η(x, t)

∂t
+ Vc

∂η(x, t)

∂x
= −Π(x, t) (9.1)

where Vc is the characteristic bed form migration rate, and Π is the deformation rate,

which is a vertical speed. When Π = 0, the above equation describes the case of evolving

bed forms that are translationally invariant whereas Π > 0 describes the case of locally

aggrading bed and Π < 0 describes the case of locally eroding bed. Dynamic equilibrium

for a bed corresponds to the case when the deformation rate averages to zero over a
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certain time scale. McElroy and Mohrig [276] noted that the dynamic bed evolution, as

defined by equation (9.1), can be used to infer the features preserved in the stratigraphic

record. Namely, this equation can be used to quantify the effect that deformation of

the bed forms has on the geometry of the preserved stratigraphy.
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Figure 9.1: (Top panel) Two superimposed streambed profiles from the experimental
data set corresponding to the 80 lps water discharge. The gray profile is from 4 mins
after the black profile. Notice that the initial streambed profile has translated and
deformed over time. This deformation becomes more evident after accounting for the
mean migration component by shifting the gray profile backward along the longitudinal
axis (bottom panel).

The deformation rate, as defined above, includes bed form state change due to

changing flow conditions as well the changes of mean bed elevation that are both short-

time variations around an equilibrium profile (as in Figure 9.1(B)) and that are larger

excursions like climbing bed forms. Thus, the deformation rate, as defined by McElroy

and Mohrig [276], has the ability to produce stratigraphy that encompasses the whole

range of behaviors between the steady aggradation of Rubin and Hunter [272] to the

bed form variability described by Paola and Borgman [13]. Our interest here is to use

the above definition of dynamic bed evolution to understand the effect that the change

in shape of the bed forms has on the geometrical structure of preserved cross-sets. For

this purpose, we can decompose the deformation rate into two components: (a) a mean
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aggradation rate that quantifies any large excursions like climbing bed forms (r̄), and (b)

change in shape of the bed forms that is quantified by the short-time variations around

an equilibrium profile (π). Under this decomposition, the short-time variations around

an equilibrium profile will average out to be zero over some time scale (i.e., 〈π〉t = 0).

Since, the deformation rate is a vertical speed that describes the rate of vertical

change in the elevation, the slopes of the bounding surfaces of the cross-sets will be

given by:

Sst =
Π

Vc
=

r̄

Vc
+
π

Vc
(9.2)

This relationship was established as early as the works by Allen [270] and Rubin and

Hunter [272], where the angle of climb of the bed forms was defined as the ratio of the

vertical speed to the horizontal, stream wise speed. The above definition gives us further

insight in that the first component of the slope of the bounding surfaces results from the

constant net aggradation present in the system, which results in a constant slope of the

bounding surfaces. The second component in the above equation is a stochastic entity

which on an average is zero but results in local changes of the slope of the bounding

surface. Any changes in the local slope of the bounding surfaces will result in curved

bounding surfaces.

The spatial rate of change of the slope of the bounding surface is defined as the

curvature of the bounding surfaces. Thus, we can derive the curvature of the bounding

surfaces from equation (9.2) as:

Cst =
∂Sst

∂x
=

∂

∂x

(
Π

Vc

)
=

∂

∂x

(
r̄

Vc
+
π

Vc

)
(9.3)

where Cst is the curvature of the bounding surfaces of the cross-sets. From the above

equation, we note that curved bounding surfaces can result from changes in net aggra-

dation rate, migration rate and bed form deformation rate. In the case when the

characteristic migration rate and the net aggradation rate are constant, the curvature

of the bounding surfaces of the preserved cross-sets is given by:

Cst =
1

Vc

∂π

∂x
(9.4)

where π corresponds to the short-time variations around an equilibrium bed profile

and quantifies the change in shape of the bed forms. Further, equation (9.3) implies
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that translationally invariant bed forms do not produce curved bounding surfaces un-

der constant net aggradation rate. Inherent to the above derivation is the time scale of

applicability of these relationships. The bounding surfaces of the cross-sets are formed

over a time scale that corresponds to the time it takes for a single bed form to translate

a distance equal to its bed form length and thus the migration and deformation rate

need to be computed over that time scale. In the next section, we describe the exper-

imental data of bed form evolution collected under zero net deposition, in which case

the deformation rate comprises only the short-time variations that correspond to the

change in the shape of the bed forms (Π = π).

9.2 Experimental arrangement and data collected

Experiments were conducted during the summer of 2011 on the Tilting Bed Flume at the

Saint Anthony Falls Laboratory (SAFL) at the University of Minnesota in Minneapolis,

MN. The flume is a rectangular channel with length, width, and depth of 15.0, 0.92,

and 0.65 meters, respectively. The bed of the flume was adjusted to zero slope (±10−4).

Sand grain sizes used in the experiments, measured using a Retsch Camsizer, were

roughly lognormal, with median diameter, D50 = 0.37 mm, and range D10 = 0.25 mm

to D90 = 0.58 mm, representing the 10th and 90th percentiles of grain size, respectively.

Measured sand density was ρs = 2.60 g/mL, and measured surface bed sediment volume

fraction was φ = 0.58.

Water from the Mississippi River entered the flume through a large pipe submerged

in an upstream headbox and exited the flume into a discharge channel by a free over-

fall. Head gradient between the Mississippi River inlet channel and water height in

the headbox naturally propelled the water flow into the flume. Water discharge was

controlled manually by a hydraulically actuated valve. Water discharge was determined

by a linear calibration curve relating valve pressure to water discharge. The discharge

calibration curve was determined by filling large weigh tanks for known durations of

time for a range of six discharges. Uncertainty of the discharge values based on the

magnitude of residuals to the fit calibration curve was 1.75 lps. Additional uncertainty

in the water discharge may have also been introduced by changes in hydrostatic pressure

due to variability in water level in the inlet channel. The head difference varied among
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Figure 9.2: Schematic of the plan view of the experiment. For the water discharge of
40 lps, data of bed elevation evolution were collected along the transect A − A′ at an
approximate temporal resolution of 17 s (green line). For the water discharge of 80 lps,
data of bed elevation evolution were collected along two parallel longitudinal transects
(B − B′ and C − C ′) and two parallel lateral transects (B − C and B′ − C ′) at an
approximate resolution of 45 s (red lines).

experiments from about 4.0 − 4.4 m, producing an additional discharge uncertainty of

±2.4%.

The flume contained a roughly constant volume of sand, which was retained in the

flume by a recirculating pump. Downstream of the test section, a 20 cm high wall

helped to ensure a minimum depth of sediment in the flume. Downstream sand flux

overtopping the wall settled into a submerged funnel located roughly 14 m downstream

of the headbox. After settling to the bottom, a water jet carried the sediment back to

the upstream end of the flume, releasing it back to the flow evenly across the channel

cross-section through a manifold. The discharge of the pump measured by a broad-

crested weir was 13.3 ± 1.1 lps. Water for the eductor jet was drawn directly from

the headbox of the flume, thus the only addition of water discharge generated by the

flume was that created by suction of water into the settling funnel, which we could

not measure. Downstream of the collection funnel, a 26 cm high gate maintained a

minimum flow depth within the flume, preventing the formation of lateral instabilities

and braiding.

Unsteadiness in water from the headbox was smoothed as it flowed through a mesh

of cobbles. A matrix of upright PVC pipes downstream of the recirculation manifold

helped to straighten water flow (see Figure 9.2), and a piece of foam floating on the water
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surface smoothed out water surface disturbances. Nonetheless, a zone of sediment scour

formed downstream of the flow straightener, extending to about 3 m from the headbox.

To ensure flow and bed form uniformity, we thus limited our bed form analyses to the

zone from 5 − 13 m downstream of the flume headbox. Detailed description of the

experimental arrangement can be found in [277].

We measured bed topography during the experiments by successive sonar scans us-

ing a JSR Ultrasonic DPR300 Pulser / Receiver. The sonar, which was minimally

submerged about 1 cm below the water surface (to reduce flow disturbances), swept up

and down the length of the observation section along longitudinal transect(s), recording

bed elevation at 1 cm intervals. The sonar recorded bed topography with sub-millimeter

resolution, although uncertainty in picking out the sonar waveform peak suggests ver-

tical accuracy on the order of 1 mm.

We collected experimental data of bed topographic evolution for two flows: 40 lps

and 80 lps. Data were collected after the bed had reached a dynamic steady-state,

which was determined by no change in the standard deviation of the bed topography in

time. For a water discharge of 40 lps, data of topographic evolution were collected at a

temporal resolution of approximately 17 s along the 8 m longitudinal transect A − A′

(shown in Figure 9.2). Figure 9.3(A) shows the streambed profiles at 1 hr intervals

for a water discharge of 40 lps and the space-time plot of the sequential streambed

profiles for the same discharge are shown at every 17 s in Figure 9.3(C). For a water

discharge of 80 lps, data of topographic evolution were collected at a temporal resolution

of approximately 41 s along two 6 m longitudinal transects (B − B′ and C − C ′ in

Figure 9.2) and along two 30 cm lateral transects (B − C and B′ − C ′ in Figure 9.2).

Figure 9.3(B) shows the streambed profiles at 1.5 hr intervals for a water discharge of 80

lps and the space-time plot of the sequential streambed profiles for the same discharge

are shown at every 45 s in Figure 9.3(D). In the next section, we use the experimental

data of bed form evolution to characterize the surface kinematics of surface evolution

for both the flows.
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Figure 9.3: Sequential streambed profiles, shown every 1 hr and 1.5 hr for water dis-
charge of (A) 40 lps and (B) 80 lps, respectively, with vertical offset to allow visual-
ization. Space-time plot of sequential streambed profiles shown every 17 s and 45 s for
water discharge of 40 lps (C) and 80 lps (D), respectively. Bed form crests and troughs
are blue and red in color, respectively.
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9.3 Characteristics of surface kinematics

In this section, our goal is to characterize the surface kinematics of bed form evolution

using the experimental data described in Section 9.2. As discussed in Section 9.1, the

surface kinematics of bed form evolution is completely characterized by migration and

deformation of the bed forms [276]. In equation (9.1), the characteristic migration rate

Vc can be estimated by performing a cross-correlation analysis of the bed elevations

along the streambed profiles at various time instances [276]. However, this approach

quantifies the bulk migration rate of all the bed forms present along a streamed profile.

Our goal here is to clearly demarcate the translational component of surface kinematics

from the deformation component, which is purely associated with the change in shape

of the bed forms rather than the differential migration rates of various bed forms along

a streambed profile. To achieve this goal, we first detrended the streambed profiles

by removing the mean bed elevation and a slight downstream shallowing and then

computed the instantaneous migration rate at each point of the streambed profile as:

V (x, t) = − ∆η(x, t)/∆t

∆η(x, t)/∆x
(9.5)

where ∆η(x, t)/∆t denotes the rate of temporal change in elevation and ∆η(x, t)/∆x

denotes the local slope, both computed via central differencing. In order to avoid sin-

gularities in the computed instantaneous migration rates, we neglected the data points

that had the absolute value of the local slope less than 0.01, which comprised less than

10% of the data set.

Once we gained access to the instantaneous migration rates at each point in space

and time of the bed form evolution, we extracted the bed forms along all the time snap

shots of the streambed profile. We used a simple peak detection algorithm to identify

the crests and troughs of each of the bed forms. The bed elevation at each point along

the streambed profile was compared to the bed elevation of its immediate neighbors

(upstream and downstream). A point along the streambed profile was chosen to be a

crest (or trough) of a bed form if the bed elevation at that point was greater (or lower)

than the bed elevation of its immediate neighbors by a fixed value. This fixed value

was arbitrarily chosen to be one-fourth of the standard deviation of the bed elevations

along a streambed profile to avoid noisy observations from contaminating our extraction

data. Figure 9.4 shows a sample streambed profile along with the extracted bed form
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crests and troughs for the experimental run with a water discharge of 80 lps. The length

of a bed form, lbf , was defined as the longitudinal stream wise distance between two

consecutive troughs of a bed form and the bed form height, hbf , was defined as the

difference between bed elevations of consecutive crests and troughs of a bed form.
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Figure 9.4: A sample detrended, mean-removed streambed profile during the experi-
mental run with a water discharge of 80 lps. The extracted bed form crests and troughs
are indicated by red and grey circles, respectively. Also defined in the above plot are
the length and height of a bed form.

We then defined the time scale of migration, Tm, as the ratio of the average bed

form length to the space-time average of the instantaneous migration rate, i.e.,

Tm =
〈lbf 〉

〈〈V (x, t)〉t〉x
(9.6)

where 〈.〉 denotes the average of the quantity within the angled brackets. The time

scale of migration quantifies the average time it takes for a bed form to translate by

a distance equal to the average bed form length. We then computed the bed form-

averaged migration rate, Vbf (x, t), by averaging the instantaneous migration rate, V (x, t)

(estimated using equation (9.5)), over the bed form length at each time instant and then

performing a time averaging over a non-overlapping time window equal to the migration

time scale, Tm, i.e., Vbf (x, t) = 〈〈V (x, t)〉lbf
〉Tm . This exercise yielded the bed form

averaged migration rate at each point in space and time.

The instantaneous deformation rate was subsequently estimated using a discrete

form of equation (9.1) given by:

Π(x, t) = −∆η(x, t)

∆t
− Vbf (x, t)

∆η(x, t)

∆x
(9.7)

This quantity Π(x, t) denotes the instantaneous deformation rate corresponding to the

spatial and temporal resolution at which the above equation is applied, i.e., the spatial
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and temporal resolution at which experimental data were collected. In order to quantify

the amount of deformation that a bed form experienced in the time that the bed form

translated by one wavelength 〈lbf 〉, we computed the net deformation rate at each point

along a bed form by averaging the instantaneous deformation rate over the migration

time scale, Tm, i.e., Πbf = 〈Π(x, t)〉Tm . In essence, if we were to treat a single bed

form as an object, the bed form averaged migration rate Vbf describes the rate at

which this object translates (which is a constant) and the net deformation rate Πbf

describes the rate at which each point on this object changes its shape in the time this

object translated by its own length. Figure 9.5 shows the empirical distributions of

the estimated deformation rates Πbf for the experimental runs with a water discharge

of 40 lps (black circles) and 80 lps (grey diamonds). The estimated means of the

deformation rates for both flows were approximately zero, confirming that the bed was at

dynamic steady-state (see Table 9.1 for a summary of the estimated statistics of surface

kinematics). The probability density functions (pdfs) of the estimated deformation rates

exhibit exponential tails for both the flows (see Figure 9.5).
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Figure 9.5: Relative frequency of the computed deformation rates Πbf in semi-log scale
for water discharge of 40 lps (black circles) and 80 lps (grey diamonds). Notice the linear
nature of the tails in this semi-log plot, which correspond to an exponential decay.
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In order to compare deformation and migration of bed forms, we computed a defor-

mation time scale, which was defined as:

Td =
〈hbf 〉

〈〈|Π(x, t)|〉x〉t
(9.8)

where Td is the deformation time scale, and hbf is the bed form height. This time

scale quantifies the average time it takes for a bed form to lose complete memory of its

shape. If the deformation time scale and the migration time scale are comparable then

it implies that the bed form loses the memory of its shape when it translates by one bed

form wavelength. Table 9.1 summarizes the computed migration and deformation time

scales for both the experimental runs. In the next section, we construct the stratigraphic

deposits for both the experimental runs and extract the statistics of the geometrical

structure of the stratigraphic boundaries.

Quantity Water discharge, 40 lps Water Discharge, 80 lps

Vbf [mm/s] 0.092 ± 0.013 0.26 ± 0.01
Πbf [mm/s] 1.67 × 10−4 ± 0.019 1.2 × 10−3 ± 0.011
|Πbf | [mm/s] 0.005 ± 0.0014 0.008 ± 0.0072
lbf [cm] 22.7 ± 8.9 32.5 ± 15.0
hbf [mm] 19.7 ± 10.0 22.7 ± 13.0
Tm [mins] 41.2 20.8
Td [mins] 65.7 47.3

Table 9.1: Estimated statistics of the surface kinematics of bed form evolution. The
temporal resolution of the data is approximately 17 s and 45 s for 40 lps and 80 lps
flows, respectively.

9.4 Geometrical structure of the preserved stratigraphy

The preserved stratigraphic column can be built from the elevation time series (see

Figure 9.6) and in this section we construct and analyze the geometrical structure of

the bounding surfaces of the preserved cross-sets. We constructed the stratigraphic

columns at each point along the streambed profile using the data of elevation time

series collected during the experimental runs (see [263] and [278] for examples where this

method was applied). This exercise provided us with the 2-D structure of the preserved

stratigraphy. Figure 9.7 shows the 2-D structure of the preserved stratigraphy for a 40
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cm longitudinal section for the experiment with water discharge of 40 lps. Two distinct

features were identified in the 2-D structure of the preserved stratigraphy, namely, the

constructed boundaries (solid lines in Figure 9.7) and the sampled topography (dashed

lines in Figure 9.7). Constructed boundaries are the surfaces that are preserved in the

stratigraphic record, which never existed in the topographic evolution. On the other

hand, sampled topography here refers to the record of the migrating lee faces in the

preserved stratigraphy. Our first goal in this section is to delineate these two features

in the stratigraphic record.
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Figure 9.6: A schematic showing the building of a stratigraphic column (S(t), red line)
from the elevation time series (η(t), black line). Stratigraphic deposits are depositional
bodies bound between two erosional events.

Sampled topographic surfaces in the preserved stratigraphy have relatively steep

slopes (corresponding to the angle of repose) and a near-zero curvature as they rep-

resent the migrating lee faces of the bed forms. Also of importance is the time of

preservation of these surfaces. A single bed form migrating downstream results in the

formation of the sampled topographic surfaces in the stratigraphic record within the

migration time scale Tm as they represent the record of the migrating lee faces of the

bed form. The surfaces that correspond to the sampled topography are sandwiched
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Figure 9.7: Constructed preserved stratigraphy for a 40 cm longitudinal section from the
40 lps experimental run. Two distinct features can be observed in the preserved stratig-
raphy, namely, the constructed boundaries (solid lines) and the sampled topography
(dashed lines). Constructed boundaries are surfaces that are preserved, which are not
present during the topographic evolution, whereas the sampled topography corresponds
to the record of migrating lee faces of the bed forms.

between the constructed boundaries in the preserved stratigraphy. Thus, on an aver-

age, the constructed boundaries are created over a time scale that corresponds to the

time scale of migration. We used the time of preservation to delineate the constructed

boundaries from the sampled topography in the 2-D stratigraphy. From the constructed

2-D stratigraphy (for example, see Figure 9.8(A)), we kept the surfaces that were Tm

mins apart in their preservation and eliminated the rest. As seen from visual inspection

in Figure 9.8(B), this exercise yielded the constructed boundaries and removed almost

all of the preserved lee faces of the migrating bed forms.

Further, notice that the constructed boundaries of the preserved stratigraphy are

noisy with millimeter scale fluctuations (Figure 9.8(B)), which are seldom found in

field observations. In order to remove this noise, we need to perform some smoothing

operation on the constructed stratigraphy. The most common way of performing this

smoothing is to use a moving average filter. However, this operator would have the

undesirable effect of not preserving (instead it will result in dilation) the local features

in the stratigraphic boundaries as equal weight is given to both the point of interest and

the points around it. We used a Gaussian window filter, G(L), in this study to remove

the noise in the constructed stratigraphic boundaries as this filter gives maximum weight
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to the point of interest and progressively lower weights to the surrounding points. Since

the average length of the preserved cross-sets was documented to be half of the mean

bed form length [268, 267], we chose the length scale of our filtering to be a quarter of

the mean bed form lengths, i.e., L = 〈lbf 〉/4 (which will correspond to half the average

length of the cross-sets). Further, we can take advantage of the well-known property of

the convolution product,

∂ (S ⋆ G)

∂x
= G ⋆

∂S

∂x
=
∂G

∂x
⋆ S (9.9)

which implies that smoothing the stratigraphic boundary S with a kernel G and then

taking the derivative (left most term) is equivalent to taking derivatives of the strati-

graphic boundary and smoothing these derivatives with the kernel G (middle term) or

equivalent to smoothing the stratigraphic boundary directly with the derivative of the

kernel G (right most term), in computing the slope and curvature of bounding surfaces

of the cross-sets. Since the derivatives of Gaussian filter are proper wavelets, we can

use wavelet filtering techniques to compute the slope and curvature of the stratigraphic

boundaries at the given scale [e.g., 9].

In this study, we delineated the constructed boundaries from the preserved stratig-

raphy corresponding to the experimental bed form evolution and smoothed them with

a Gaussian window filter. We then computed the first and second derivatives of the

smoothed data to get the local slope and curvature of these surfaces, respectively (first

term of equation (9.9)). Figure 9.9 shows the empirical densities (gray bars) of the

observed slopes (Sst) and curvatures (Cst) of the constructed boundaries in the pre-

served stratigraphy for both 40 lps and 80 lps. In the next section, we compare the

observed statistics of the geometrical structure of the stratigraphic boundaries with the

theoretical predictions presented in Section 9.1.

9.5 Results

As stated in Section 9.1, the local slope of the stratigraphic boundary is equal to the

ratio of the vertical speed to the horizontal speed at a point on the bed form. Thus,

the prediction of the local slope of the stratigraphic boundary at each point under no
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Figure 9.8: (A) Constructed 2-D structure of preserved stratigraphy for a one meter
section of the longitudinal transect B − B′ (see Figure 9.2) for the experimental run
with a water discharge of 40 lps. (B) The constructed boundaries, delineated using
the time separation between the preserved surfaces corresponding to the average time
of migration of the bed forms, in the 2-D structure of the preserved stratigraphy. (
C) Constructed boundaries smoothed using a local Gaussian filter of length equal to a
quarter of the mean bed form length. Notice that the smoothing operation removes the
millimeter scale noise present in the constructed boundaries.
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Figure 9.9: Plot showing the empirical (gray bars) and the theoretically predicted (solid
line) densities of the local slopes (A, B) and curvatures (C, D) of the stratigraphic
boundaries for both the 40 lps and 80 lps experimental runs. The observed slopes and
curvatures were computed as the first and second derivatives of the smoothed strati-
graphic boundaries, respectively. The predicted slopes and curvatures of the strati-
graphic boundaries were computed using equations (9.10) and (9.11), respectively.
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net deposition condition (like the experimental case) is:

Sst =
Πbf

Vbf
(9.10)

We computed the predicted slope of the bounding surfaces of the preserved cross-sets

by evaluating the above equation using the experimental data collected for both flows.

Further, the predicted local curvature of the bounding surfaces can be obtained by

taking the first spatial derivative of equation (9.10):

Cst =
∂Sst

∂x
=

1

Vbf

∂Πbf

∂x
(9.11)

For this purpose, we computed the spatial gradients of the net deformation rate (Πbf )

via central differencing. We then computed the predicted curvature of the stratigraphic

boundaries using equation (9.11).

Figure 9.9 shows the empirical densities of the predicted slope and curvature of the

bounding surfaces of the preserved cross-sets for both the 40 lps and 80 lps experimen-

tal runs. It is visually evident that equations (9.10) and (9.11) provide a very good

approximation of the observed slope and curvature of the stratigraphic boundaries. We

performed the Kolmogorov-Smirnov two-sample test to check if both the samples of the

observed and predicted quantities of slope and curvature of the stratigraphic boundaries

came from the same underlying continuous distribution [279]. The test statistic in the

Kolmogorov-Smirnov test is the maximum of the absolute value of the distance between

the two sample cumulative distribution functions (cdfs). The null hypothesis is that

both the samples come from the same underlying continuous distribution and the null

hypothesis is rejected if the maximum of the absolute value of the distance between the

two sample cdfs (DCDF ) is greater than some threshold value (Dα1). This threshold

value, for large sample sizes, is given by:

Dα1 = c(α1)

√
n1 + n2

n1 × n2
(9.12)

where α1 is the significance level, n1 and n2 are the sample sizes and c (α1) is a coef-

ficient, which comes from the Kolmogorov distribution tables. Figure 9.10 shows the

absolute values of the distance between the observed and predicted cdfs of the slope

and curvature of the stratigraphic boundaries along with the threshold of acceptance
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of the null hypothesis in the Kolmogorov-Smirnov test at a significance level of 5%.

From Figures 9.10(A) and (B), we conclude that the observed and predicted slopes

of the stratigraphic boundaries have the same underlying continuous distribution as

DCDF < Dα1 indicating, thus, that equation (9.10) provides a means of relating the

characteristics of the surface kinematics of bed form evolution to the slope of the strati-

graphic boundaries. Figures 9.10(C) and (D) indicate that the distance between the

sample cdfs of the observed and predicted curvature of the stratigraphic boundaries

exceeds the threshold value at a significance level of 5%, which prompts us to reject

the null hypothesis. However, we note that the values of DCDF exceed the threshold

Dα1 at curvatures that are very close to zero. We believe that this is a direct effect

of the resolution of the data collected. The vertical and the stream wise resolution of

the data collected were 1 mm and 1 cm, respectively, thus, indicating that the local

curvature values very close to zero are not resolved very well in this dataset. Except

at the values of local curvature very close to zero, the distance between the two sample

cdfs of the observed and predicted curvatures of the stratigraphic boundaries is well

within the threshold value of Dα1 , indicating that the predicted curvature of the strati-

graphic boundaries computed using equation (9.11) provides a good approximation of

the observed pdf of the local slopes of the stratigraphic boundaries.

Further, we compared the statistics (mean and standard deviation) of the absolute

values of the observed and predicted slope |Sst| and curvature |Cst| of the stratigraphic

boundaries. Figure 9.11 documents that both and the mean and standard deviation of

the geometrical properties of the startigraphic boundaries are well described by equa-

tions (9.10) and (9.11). All in all, we conclude that deformation of bed forms plays

an important role in setting the geometrical structure of the stratigraphic boundaries

with the ratio of deformation rate and the migration rate setting the slope of the strati-

graphic boundary and the ratio of the spatial gradient of the deformation rate and the

migration rate setting the curvature of the stratigraphic boundary.

9.6 Discussion

As was shown in the previous section, the surface kinematics of the bed form evolution

can be statistically mapped into the geometrical structure of the bounding surfaces of
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Figure 9.10: The absolute value of the distance between the two sample cdfs of slopes
((A) and (B)) and curvatures (( C) and (D)) of the stratigraphic boundaries along with
the threshold value (dashed line) of acceptance for the Kolmogorov-Smirnov test at a
significance level of 5%.
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Figure 9.11: Plot showing the comparison of the mean (black markers) and standard
deviation (red markers) of the absolute value of the observed and predicted slope and
curvature of the stratigraphic boundaries for both 40 lps and 80 lps experimental runs.

the preserved cross-sets. The set thickness distribution f (Dst), along with the length,

slope and curvature of the stratigraphic boundaries completely describe the geometrical

structure of the preserved stratigraphy. Under zero net deposition, Paola and Borgman

[13] derived an analytical relationship between the variability of the bed form heights

hbf and the distribution of set thickness Dst. They used a two-parameter Gamma

distribution given by,

f (hbf ) =
hα−1

bf exp (−hbf/β)

βαΓ(α)
(9.13)

where α is the power-law parameter and β is the exponential parameter of the Gamma

distribution, to describe the pdf of the bed form heights. (Note that the purpose of

using the Gamma distribution was to capture the exponential tail of the pdf of the bed

form heights). They analytically derived set thickness distribution for Dst > 0 to be:

f (Dst) =
ae−aDst

(
e−aDst + aDst − 1

)

(1 − e−aDst)2
(9.14)

and zero for Dst ≤ 0. The parameter of the set thickness distribution a was related to

the exponential parameter of the bed form heights as a = 2/β [13]. Figure 9.12 shows
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that our experimental data is in very good agreement with the theory of Paola and

Borgman [13]. The bed form heights were well described by a two-parameter Gamma

distribution and equation (9.14) provides a very good description of the resulting set

thickness distribution. Thus, this result states that the bed form heights together with

the length of the bed forms act as the control on the set thickness distribution and the

length of the cross-sets [e.g., 267].

Our results in the previous section state that the slope and curvature of the strati-

graphic boundaries record the competition between the deformation and migration of

the bed forms. We note that the mean and standard deviation of the deformation rate

changes at a much slower rate with the flow when compared to the migration rate (see

Table 9.1). Thus, the numerator in the right hand side (deformation rate and gradient

of deformation rate) of equations (9.10) and (9.11) does not change at the same rate

with the flow as the denominator (migration rate). This results in higher variability in

slope and curvature of the stratigraphic boundaries at lower flows when compared to the

higher flows (see Figure 9.9). This is also reflected in the higher values of the mean and

standard deviation of the absolute values of the slope and curvature of the stratigraphic

boundaries at low flow when compared to the higher flow (see Figure 9.11).

Further, gradual changes in the migration rate and the aggradation rate of the bed

forms are also recorded in the geometrical structure of the stratigraphic boundaries

(see equations (9.2) and (9.3)). We note that a large-scale curvature ( correspond-

ing to a scale much larger than the length scale of the bed forms) can be imposed on

the stratigraphic boundaries if there is a gradual change in the migration rate or the

net aggradation rate in the system. According to equation (9.3), this effect should be

recorded in the curvature of the stratigraphic boundaries and multi-scale analysis of cur-

vature of the stratigraphic boundaries has the potential to delineate not only the effect

of bed form deformation, but also the changes in migration speed and aggradation rate

that might result from some climatic changes in the system. Quantitative relationships

between preserved stratigraphy and surface kinematics together with the information

of the environmental conditions that result in a given set of surface kinematics have

the potential of unlocking the paleoenvironmental conditions from the vast amount of

available stratigraphic data.
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Figure 9.12: (Top panels) Plots showing the empirical densities (gray bars) of the ex-
tracted bed form heights along with the best fit two parameter Gamma distribution
(solid line) for 40 lps and 80 lps experimental runs. (Bottom panels) Observed em-
pirical densities (gray bars) of the set thicknesses computed from the constructed pre-
served stratigraphy for the experimental runs. Also shown is the predicted set thickness
distribution (solid line) based on the variability of bed form heights computed using
equation (9.14) with a = 2/β [13].
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9.7 Conclusion

In this study, we used experimental data of bed form evolution collected from a Tilting

Flume experiment conducted at St. Anthony Falls Laboratory, University of Minnesota

to develop and validate quantitative relationships between the surface kinematics of bed

form evolution and the geometrical structure of the bounding surfaces of the preserved

cross-sets. The following conclusions were drawn from the present study.

1. The local slope of the stratigraphic boundaries Sst was shown to be equal to the

ratio of the deformation rate of bed forms Πbf and the migration rate of the bed

forms Vbf , under no net deposition condition. The deformation rate quantifies the

change in shape of the bed forms, while the migration rate quantifies the rate of

translation of the bed forms.

2. We showed that the curvature of the stratigraphic boundaries Cst, defined as the

first spatial derivative of the local slopes of the stratigraphic boundaries, was equal

to the ratio of the spatial gradient of the deformation rate and the migration rate

of the evolving bed forms.

3. We concluded that the deformation rate increases at a slower rate with flow when

compared to the migration rate, thus, implying that under low flow conditions

the slope and curvature of the stratigraphic boundaries exhibit higher variability

when compared to the case of higher flows.

4. Further, the theoretical predictor of the curvature of the stratigraphic bound-

aries (equation (9.3)) suggests that a multi-scale analysis of the curvature of the

stratigraphic boundaries has the potential to give us information not only about

the deformation, but also about any gradual changes in the migration rate or

aggradation rate in the system.

5. Finally, we showed that the experimental data of set thickness distribution was

consistent with the theory of Paola and Borgman [13], with the bed form heights

being well described by a two-parameter Gamma distribution and the set thickness

distribution was well approximated with the theoretical pdf of equation (9.14).



Chapter 10

Epilogue and Future Prospects

In this thesis research, sediment transport in diverse environments was studied from

a unique point of view, placing special emphasis on the role of the heterogeneity and

variability across a wide range of scales: from particle to hillslope to a river system.

Sediment flux was treated as resulting from the movement of an ensemble of sediment

particles, which alternate between states of rest and motion. It was shown that the

existing physical models of sediment flux have inherent assumptions of the statistical

nature of rest and motion of the sediment particles. In particular, they assume a

thin-tailed distribution for the waiting times and the sediment travel distances, or in

other words, the existence of a characteristic space and time scale of transport. When

no characteristic space and/or time scale of transport exists in a system, due to, for

example, a finite chance of large waiting times or sediment travel distances, then we

move into the realm of non-local theories for sediment transport. This thesis research

presents the first comprehensive treatment of the notion of non-local transport on the

Earth’s surface.

The non-local theories of sediment transport presented in this thesis account for

the heavy-tailed nature of the waiting times and/or the sediment travel distances in a

system, thus, shedding new light on the role of extremes in geomorphic systems. Specif-

ically, the non-local transport theories are concise, continuum models that have the

ability to capture the role of the extremes in geomorphic systems. The heavy-tailed na-

ture of the resulting states of motion and rest of sediment particles can be the effect of
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Figure 10.1: An illustration of the Earth’s sediment routing system. The transport
processes studied here are highlighted with pictures, which range from sediment trans-
port on hillslopes (A), to catchment scale dynamics (B), to deposition of sediment in
deltaic systems (C) and their implications for the preserved stratigraphic record (D)
(Photographs courtesy: CSMDS and NCED).

the nature of extremes of the driving forces of sediment transport (e.g., extreme fluctua-

tions in runoff and streamflow) or they could be a manifestation of the heterogeneity of

the system under consideration (e.g., multiple reasons for sudden sediment production

on a hillslope). Further, this thesis research raises important questions and highlights

the practical implications in the application of the local, nonlinear sediment transport

models. The main messages of this thesis research are as follows:

1. The non-local, linear sediment transport model and the local, nonlinear sediment

transport model for hillslopes present themselves as competing models that could

give rise to the same sediment flux and steady-state properties of landscapes,

but the underlying assumptions behind these models have important practical

implications. The application of the local, nonlinear sediment transport model

can result in scale-dependence of model parameters and also does not explain the

observed variability in the sediment flux in natural environments.



199

2. The heavy-tailed nature of the states of motion and rest of the sediment particles,

which is a manifestation of the extremes, results in the observed steady-state

properties of landscapes, thus, shedding new light in interpreting the link between

geomorphic process and form.

3. In deltaic systems, the heavy-tailed nature of the space-time dynamics of sur-

face evolution is preferentially preserved in the stratigraphic record. Specifically,

the extremes of the erosional and depositional events cancel themselves out in

the stratigraphic record, resulting in thin-tailed statistics of the 1D stratigraphy.

However, the heavy-tailed nature of the waiting times manifests itself as the Sadler

effect (i.e., the apparent dependence of deposition rate on time), which can give

us insight into the avulsion dynamics of the deltaic system.

This thesis research also raises many important questions and opens new directions

for future research. These include:

1. Extensive and thorough experimental and field studies that establish the particle

scale dynamics that form the basis for the non-local sediment transport models

are rare at present [42] and are essential in relating the physics of the processes

involved to the model parameters of the non-local transport models.

2. Nonlinear and non-local sediment transport hypotheses are seen as mutually ex-

clusive approaches at present. However it is understood that if we consider only

nonlinearity and neglect non-locality in the sediment flux modeling then we over-

estimate the strength of nonlinearity and similarly if we neglect nonlinearity and

only consider non-locality then we overestimate the degree of non-locality in the

system, thus, highlighting the need for a combined nonlinear, non-local approach

to sediment flux modeling. Future work should involve a combined nonlinear,

non-local approach to describing sediment transport. Preliminary efforts in this

direction [e.g., 280] seem fruitful.

3. The statistical approach of characterizing the surface dynamics of deltaic sys-

tems has the potential to explore many other questions pertaining to surface-to-

subsurface characterization of these systems, such as, for example, how does the

deltaic system self-organize into a dynamic structure capable of maintaining the
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subaerial delta over different time scales? It is envisioned that the physical con-

trols on the spatial distribution of depositional and erosional events across the

system can provide information on how the geometrical parameters of the deltaic

system (e.g., channel depth, width, etc.) control the dynamics of the evolving and

reorganizing deltaic surface, and this is a topic of future study.

4. Moving sediment particles carry with them the attached pollutants and biologi-

cal agents. Several stream processes, such as, nutrient uptake or dissolved oxy-

gen concentration, are largely influenced by the tremendous heterogeneity of the

sediment-water interface, which can introduce non-local effects manifested in very

long inactivity times or very fast sediment velocities. Extension of the ideas pre-

sented herein to biological or non-reactive chemical transport on the Earth’s sur-

face, such as, modeling dissolved oxygen concentration and nutrient uptake is an

area of future study.
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Appendix A

Geometrical interpretation of

multifractal analysis

The local singularity of a function at location t0 is quantified using the so-called Hölder

exponent defined as:

|f(t0) − f(t0 + ǫ)| ∼ C|ǫ|H(t0) (A.1)

where 0 < H(t0) < 1 is the Hölder exponent of the function f at a location t0 [281].

As seen in the above equation, the limit of H = 0 corresponds to discontinuity in the

signal and H = 1 corresponds to discontinuity in the derivative of the signal. As H → 0

the signal is said to be more irregular or “rougher”. The spectrum of Hölder exponents

(also called the spectrum of singularities), D(H), is defined as the Hausdorff dimension

of all the points t in the signal which have the same Hölder exponent [201, 282, 283],

i.e.,

D(H) = dH{t : H(t) = H} (A.2)

The scaling exponent function, ζ(q), and the spectrum of Hölder exponents, D(H), are

related through the Legendre transform given as [281, 204]:

D(H) = min
q

{qH− ζ(q) +Df} (A.3)

where Df is the fractal dimension of the support of singularities of the function f(t).

For the case of a continuously differentiable ζ(q), the following relations hold:

H =
dζ(q)

dq
(A.4a)
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D(H) = qH− ζ(q) + 1 (A.4b)

thus providing a means of computing the spectrum of Hölder exponents from the scaling

exponent function ζ(q). (Equation (A.4b) is consistent with equation (A.3) and, in fact,

in view of equation (7.14), Df = 1− c0). Notice that when ζ(q) has a linear dependence

on q (monofractality) the value of the Hölder exponent is a constant for all locations

t (and D(H) is a spike) indicating a homogeneous arrangement of local singularities

in the signal. However, when ζ(q) has a nonlinear dependence on q (multifractality),

more than one singularity is present in the signal which is characterized by a whole

D(H) spectrum of Hölder exponents, thus indicating a heterogeneous spread of various

degrees of singularities across the signal. This heterogeneity of singularity arrangement

manifests itself, visually, as spikes of varied strength heterogeneously arranged in the

signal (as seen in Figure 7.3).

In this study we used the higher-order structure function analysis to estimate the

scaling exponent function and, by taking the Legendre transform, equation (A.4), es-

timate the spectrum of Hölder exponents (as shown in Figure 7.15(C)). More sophisti-

cated methods for the computation of the spectrum of Hölder exponents from the data

are available via Wavelet Transform Modulus Maxima (WTMM) and Cumulant anal-

ysis (see [204] for a detailed description of these methods). For example, the WTMM

method (applied to the maxima of the wavelet coefficients only and not to the whole

signal) allows computation of statistical moments of negative order and thus it has di-

rect access to the right part of the spectrum of singularities. However, in our case the

quadratic approximation of the spectrum of scaling exponents curve provides an excel-

lent approximation to the empirically computed spectrum (see Figure 7.15(B)) allowing

thus an accurate approximation of the right part of the spectrum of singularities due to

its parabolic symmetric shape.



Appendix B

Stable distributions

IfX,X1,X2, . . . are mutually independent random variables with a common distribution

Fs, then the distribution Fs is said to be stable if for each n ∈ Z, there exists constants

Cn and rn such that [81, 20]:

Sn
d
=CnX + rn (B.1)

where Sn = X1 +X2 + · · ·+Xn and
d
= means identical in distribution. In other words,

stable distributions are aggregation invariant up to a scale parameter, Cn, and location

parameter, rn. The normalizing constant Cn is of the form n
1
α for 0 < α ≤ 2, where α

is called the characteristic exponent of the distribution Fs. The distribution Fs is said

to be strictly stable when rn = 0. Closed-form expressions of the density functions of

stable distributions exist for values of α equal to 2, 1 and 0.5. In general, the stable pdf

is defined by its Fourier transform [284]:

ρ̂(k) = {−iδk − |γk|α
(
1 + iβsgn(k) tan

(πα
2

))
} (B.2)

for 0 < α ≤ 2 and α 6= 1. In the above equation sgn(·) denotes the signum function. The

remaining parameters of the distribution are the location parameter (−∞ < δ < ∞),

scale parameter (γ > 0) and the skewness parameter (−1 ≤ β ≤ 1). The distribution

is symmetric for β = 0 and is said to be completely skewed for β = −1 and β = 1.

For α = 2, ρ̂(k) gives the Fourier transform of a Gaussian density with mean δ and

variance 2γ2. For the special case α = 1, the Fourier transform is expressed in a slightly

different way. When α = 1 and β = 0, the stable distribution is also called a Cauchy

distribution.
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If a random variable X has an α-stable distribution, then its theoretical statistical

moments exist only up to order α. The mean of the distribution exists when 1 <

α ≤ 2, but when 0 < α < 1 both the mean and variance of the distribution are

undefined. Thus, the Gaussian distribution is the only stable distribution with finite

mean and variance. Stable distributions provide good approximations for spatial rainfall

fluctuations in convective storms [285], daily discharges in river flows [286], spatial

snapshots of tracer plumes in underground aquifers [82] and river flows [287].



Appendix C

Numerical simulation of

heavy-tailed random variables

C.1 Symmetric α-stable random numbers

The most convenient way of generating symmetric α-stable random variables is by using

the following transformation method [190]:

ξα = γx

( −cosφlnu
cos ((1 − α)φ)

)1−1/α sin (αφ)

cosφ
(C.1)

where φ = π (v − 1/2), u, v ∈ (0, 1) are independent uniform random numbers, γx is the

scale parameter and ξα is a symmetric α-stable random number. For α = 2, the above

equation reduces to ξ2 = 2γx

√
−lnusinφ, which is the Box-Muller method for Gaussian

deviates. The other two notable limit cases are the Cauchy distribution, with α = 1 and

ξ1 = γxtanφ, and the Lévy distribution, with α = 1/2 and ξ1/2 = −γxtanφ/ (2cosφlnu).

Using the above relation we can simulate not only the heavy-tailed step lengths of a

CTRW process, but we can use the above relationship to plot stable distributions of

various tail-indices.
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C.2 One parameter Mittag-Leffler random numbers

The probability density of the heavy-tailed waiting times can be described by a Mittag-

Leffler probability distribution. The most convenient way of generating random vari-

ables from a Mittag-Leffler distribution is as follows [190]:

τβ = −γtlnu

(
sin(βπ)

tan(βπv)
− cos(βπ)

)1/β

(C.2)

where u, v ∈ (0, 1) are independent uniform random numbers, γt is the scale parameter,

and τβ is a Mittag-Leffler random number. For β = 1, the above equation reduces to

the inversion formula for the exponential distribution: τ1 = −γtlnu.

C.3 Truncated and Tempered Pareto random numbers

Truncated and Tempered Pareto random variables can be simulated by generating the

Pareto random variables and imposing on them the a priori known upper bound. Let

us denote a Pareto random variable by xp. The easiest way of generating a Pareto

random variable with a tail index α is by raising a uniform random variable, u, to

a power of −α, i.e., xp = u−α. A truncated Pareto random variable (xtp) with a

tail index α and upper bound ν can then be iteratively generated by retaining the

Pareto random variables lesser than ν and by discarding the values greater than ν, i.e.,

xtp = {xp ≤ ν}. Further, an exponential random variable (xe) with a rate parameter β

can be simulated from a uniform random variable by using the following relationship:

xe = −(1/β)ln(u). A tempered Pareto random variable (xtemp) with a tail index α

and rate of exponential tempering β can then be iteratively generated by retaining the

Pareto random variables lesser than xe and by discarding the values greater than xe in

each iteration, i.e., xtemp = {xp ≤ xe}. It is easy to see that unlike the truncated Pareto

random variables, the random numbers sampled from a tempered Pareto distribution

have a stochastic truncation as the extremes are governed by the exponential random

variable xe.



Appendix D

Fractional Calculus

D.1 Definitions

The two most common definitions of a fractional derivative are its Riemann-Liouville

form and the Caputo form. Both these definitions are fundamentally based on the

definition of a fractional integral. Fractional integration of order α is defined as the

convolution with a power-law “memory” kernel, which can be written as:

Iα
x {f} =

1

Γ(α)

∫ x

0

f (ζ)

(x− ζ)1−α dζ (D.1)

where Iα{.} denotes the fractional integral of order α. The αth derivative of a function

f(x) in its Riemann-Liouville form is then defined as the nth derivative of the (n−α)th

integral, i.e.,

Dαf(x) = DnIn−αf(x) =
1

Γ(n− α)

dn

dxn

∫ x

0
(x− ζ)n−1−α f (ζ) dζ (D.2)

where n − 1 < α < n, n ∈ Z and Dα{.} denotes the fractional differentiation operator

of order α.

The alternate is the Caputo fractional derivative, which is defined as the (n− α)th

integral of the nth derivative of f(x):

Dαf(x) = In−αDnf(x) =
1

Γ(n− α)

∫ x

0
(x− ζ)n−1−α dn

dζn
(f (ζ)) dζ (D.3)

235



236

Application of the fractional integral operator of order 1− α to a power function of

order β gives:

I1−α
x {xβ} =

Γ(β + 1)

Γ(β − α)xβ−α+1
(D.4)

and the fractional derivative of the same function is:

D1−α
x {xβ} =

Γ(β + 1)

Γ(β + α)xβ+α−1
(D.5)

One of the key differences in the functional forms of the two definitions is that, the

Caputo derivative of a constant is zero, whereas the Riemann-Liouville definition of a

constant is given by:

D1−α
x {c} =

c

Γ(α)
xα−1 (D.6)

D.2 Discretization of fractional derivatives

The one-shift Grünwald weights have been shown to be stable in numerical computations

and approximations of the fractional derivatives. The discretized approximation of a

fractional derivative of order 1 < α ≤ 2 of some function f(x) is given by:

∂αf(x)

∂xα
=

1

Γ(−α)
lim

N→∞

1

∆xα

N∑

k=0

Γ(k − α)

Γ(k + 1)
f (x− (k − 1)∆x) (D.7)

where ∆x is the spatial grid size of the discretization and N is the number of grid

points. Further, the one-shift Grünwald discretization of the fractional derivative has

been shown to be consistent and unconditionally stable in the implicit Euler and Crank-

Nicholson schemes.
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