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[1] There is an emerging viewpoint that the sediment flux
at a given point on the landscape may be influenced by
landscape properties in a region extending away from the
point of interest. Using a general sediment transport model
that incorporates this non-local nature via fractional derivatives,
we find a strong asymmetry in the direction in which the
non-locality affects a given point: For erosional landscapes,
physically plausible elevation profiles are obtained only when
the spatial influence is restricted to the region upstream of
the point of interest. By contrast, in depositional landscapes,
the non-local model is guaranteed to produce physically
plausible topographic profiles only when the spatial influence
is restricted to the region downstream of the point of interest.
These results suggest that information flows downstream
in an erosional landscape and upstream in depositional
landscapes. Citation: Voller, V. R., V. Ganti, C. Paola, and
E. Foufoula-Georgiou (2012), Does the flow of information in a
landscape have direction?, Geophys. Res. Lett., 39, L01403,
doi:10.1029/2011GL050265.

1. Background

[2] How is geomorphic information at a point in a land-
scape passed to surrounding points? One obvious means of
transfer is via wave-like propagation through the channel
network on the landscape surface. In general, the direction
of such propagation can be both up- and downstream and
is independent of the landscape’s uplift/subsidence regime
[Allen, 2008]. Specific examples include the up- and down-
stream migration of meanders (depending on the channel
aspect ratio and meander wave number) [Seminara, 2006;
Zolezzi and Seminara, 2001; Zolezzi et al., 2005], upstream
migration of erosional fronts [Tucker and Slingerland, 1994],
and upstream-propagating waves of deposition [Hoyal and
Sheets, 2009]. In contrast, the spatial convolution integrals
at the core of the emerging non-local models of landscape
dynamics [Schumer et al., 2009; Foufoula-Georgiou et al.,
2010; Voller and Paola, 2010] imply that conditions at a
point may depend intrinsically on conditions elsewhere in the
landscape, without the need for a wave-like propagation.
Here, by considering a simple realization of a source-to-sink
sediment transport model, we show that, in this non-local
framework, physically plausible solutions for fluvial long
profiles require a binary partitioning in the direction of
influence between erosional and depositional landscapes. In

erosional landscapes the non-locality is directed upstream,
i.e., sediment flux at a point depends on information from
features of the landscape upstream of the point in question.
Depositional systems present the mirror image, where the
non-locality is directed downstream and the sediment flux
is controlled by information from the downstream land-
scape features. In the non-local framework of fractional
diffusion, the direction in which information is passed and
recorded in landscapes is fundamentally dependent on their
mean state of mass balance (net loss versus net gain).

2. A Basic Long-Profile Transport Model

[3] The starting point in the analysis is a model of the
mean fluvial surface topography along the flow path from
source to sink (the “long profile”). A basic realization of this
system, which takes account of the major sediment produc-
tion and deposition in the system, comprises a contiguous
domain of an erosional uplifting region connected to a sub-
siding depositional basin. In this way, a local balance
between erosion (deposition) and uplift (subsidence) results
in a steady-state laterally averaged fluvial profile measured
by the elevation profile h(x). The governing equation is the
steady Exner equation [Paola and Voller, 2005]. With suit-
able scaling and the assumptions (without loss of generality
for the current analysis) that the erosional and depositional
domains equally divide the domain and undergo piston
uplift/subsidence (+1/�1), the steady Exner leads to two
separate problem statements, one for the erosional region
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and the other for the depositional region
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where q(x) is the unit sediment discharge and a reference
elevation h(12) = 0 is imposed. In systems where the channels
on the fluvial surface can set their own width, reasonable
first order approximations of sediment transport theory sug-
gest that the unit discharge is proportional to the local fluvial
slope [Paola et al., 1992]—a linear diffusion law—i.e.,
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This definition can be used in (1) and (2) to find the steady
state fluvial profile
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A plot of the elevation from (4) (Figure 1) exhibits—subject
to the assumption of linear diffusion transport—a fluvial
long profile consisting of a concave-down erosional profile
with maximum elevation at the upstream domain boundary
(x = 0) and a concave-up depositional profile with a mini-
mum elevation at the downstream boundary (x = 1).

3. A Non-local Model

[4] A key feature in the model presented above is a flux
given in term of a local quantity; the fluvial slope. The under-
lying assumption of any local model is a separation of scales
between the scales of heterogeneity of the system and the scales
of transport. However, landscapes are shaped by processes that
have heavy-tailed distribution (e.g., streamflows, precipitation,
etc.) and the landscapes themselves are known to exhibit vari-
ability over a range of scales (that is manifested in the fractal
structure of landscapes [Trucotte, 1992]). These observations
have driven an emerging view that transport in landscapes may
be better treated with non-local models [e.g., Schumer et al.,
2009; Foufoula-Georgiou et al., 2010; Voller and Paola,
2010]. Within this approach, diffusive flux is estimated as a
power-law weighted sum of slopes across a region that could
extend both up- and downstream of the point of calculation.
Recent results have shown that such diffusive models can
provide a better match to the observed convexities of erosional
hill-slopes [Foufoula-Georgiou et al., 2010] and experimental
depositional fluvial profiles [Voller and Paola, 2010]. In this
light, we explore the consequences of introducing a non-local
treatment in our example erosion-depositional diffusive land-
scape transport model.
[5] A standard approach for formally introducing non-

locality into the Exner transport model—appropriate when the
heterogeneity length scales on the fluvial surface are power-
law distributed—is to use fractional calculus [Podlubny,
1998]. In this way, recalling that in our simple model the

erosional and depositional components form a single contig-
uous domain, a non-local expression for the unit discharge can
be written as a weighted average of the left- and right- handed
Caputo derivatives, i.e.,
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or in more compact notation
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In these expressions the parametera, 0 <a ≤ 1, is a measure of
the locality. A value of a = 1 indicates pure locality: the unit
discharge is determined only by the local fluvial slope�dh/dx.
On the other hand, as a → 0 the value of the unit discharge
depends equally on all the slopes throughout the integration
domain and is thus entirely non-local. In addition to the mea-
sure of locality it is also important to recognize the difference
between the two components on the right-hand side of (5). In
the first component the integration is over the region upstream
of the point x, indicating that only upstream features in the
landscape control the non-locality. By contrast, in the second
component the integration is over the downstream region,
thereby indicating that the non-locality is controlled by
downstream features and conditions. Thus the parameter b,
�1 ≤ b ≤ 1 in (5) is a directional measure, providing a
weighting between purely upstream (b = 1) and purely
downstream (b = �1) non-locality.
[6] It is worth noting at this point that there are a number

of alternative definitions for a fractional derivative—see
Podlubny [1998] for a general treatment of the alternatives or
Voller and Paola [2010, Appendix] for a discussion in a
geophysical setting. Here, we choose the Caputo derivative for
two reasons: (i) it is not singular at the origin and (ii) Caputo
derivatives of a constant are zero. These features allow us to
readily develop closed solutions for our test problem.

4. The Influence of the Direction
of Non-local Information

[7] Up to this point, research on the application of
equation (5), or its equivalent (6), in modeling landscapes
has examined the role of the locality factor a, with a focus
on understanding how this value is related to the statistics
of physically observed features in the landscape [Schumer
et al., 2009; Foufoula-Georgiou et al., 2010; Voller and
Paola, 2010]. Here we study instead the non- locality
direction coefficient �1 ≤ b ≤ 1. In particular, on using the
basic properties of Caputo derivatives [Foufoula-Georgiou
et al., 2010; Podlubny, 1998]—that the fractional deriva-
tive of a positive power is
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Figure 1. Fluvial profile predicted with local Exner model
(equations (4a) and (4b)). The solid line is thy fluvial profile
in the uplift/erosional domain, the broken line is the profile
in the subsiding/depositional domain. Note the key physical
attributes of a concaved-down erosional profile with maxi-
mum elevation at the upstream domain boundary (x = 0)
and a concave-up depositional profile with minimum eleva-
tion at the domain boundary (x = 1).
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the derivative of a constant is identically zero, and in the
interval 0 ≤ x ≤ 1, the right and left derivatives are related
through [Foufoula-Georgiou et al., 2010]

da

d �xð Þa ≡
d

d 1� xð Þa ; 0 ≤ x ≤ 1 ð8Þ

—we can re-solve (1) and (2) with the unit discharge defi-
nition in (6) and arrive at non-local expressions for the flu-
vial profile in the limit cases of b = 1 or b = �1 (Table 1).
Plots of the source-sink profiles in Table 1 (Figure 2) for a
non-locality of a = 0.7 show that with a full upstream bias in
the locality, the maximum surface elevation, as physically
expected, is located at the origin. On the other hand, if we
assume a full downstream bias the erosional section of the
profile is non-physical, exhibiting a maximum elevation
downstream of the origin. In fact, assuming that the profiles
for general values of the direction parameter �1 < b < 1
must be enveloped by these limit solutions, we argue that

a physical meaningful solution for the erosion profile, with
the maximum elevation located at the origin, can occur only
with a full upstream bias b = 1. Similar arguments lead to the
conclusion that a physically meaningful depositional profile
solution can occur only with a full downstream bias b = �1.
Hence, to the extent that the fractional calculus provides
a valid non-local treatment, the mathematical analysis of
long-profiles solutions compared to the physically expected
behavior leads to an interesting hypothesis:
[8] Non-locality in an erosional landscape is purely deter-

mined by upstream features and conditions, whereas in a
depositional landscape the non-locality is controlled by
downstream features and conditions.
[9] This hypothesis implies that the flow of information in

landscape dynamics depends on the nature of the system
considered; in an erosional system, information flows forward,
in the downstream direction whereas in a depositional system,
information flows backwards, in the upstream direction.

5. Discussion

[10] What might explain the observed switch in non-
locality direction between the erosional and depositional
cases? We turn first to the mathematical nature of the prob-
lem. Within the mathematical construct, the feature that
ultimately controls the locations of the extrema in the domain
is the zero unit discharge boundary conditions, located at
x = 0 in the erosional system and at x = 1 in the depositional
system. In local models this corresponds to specifying a
zero first derivative in the fluvial local slope, dh/dx = 0, at
these locations. In the problems of interest, a zero local slope
at the appropriate domain boundary is sufficient to ensure
that a non-physical maximum or minimum does not occur
within the domain 0 < x < 1. In the erosional system, by
taking the appropriate integer derivative of the solutions in
Table 1, it can be seen that when the non-locality is fully
biased upstream (b = 1) the local slope at x = 0 is identically
zero for all choices of 0 < a ≤ 1whereas the slope when the
non-locality is fully biased downstream (b � 1) is strictly
positive for all values of a < 1 (see right hand column in
Table 2). On accepting that the predictions for fluvial pro-
files obtained with non-extreme values of non-locality
direction, i.e., �1 < b < 1, will be enveloped by the solu-
tions at the extremes (shown in Figure 2 and Tables 1 and 2)
it follows that, for any choice where b ≠ 1 and a ≠ 1, the
local gradient dh/dx at x = 0 will be strictly positive. In this
circumstance the resulting fluvial surface has to exhibit
a (non-physical) maximum downstream of x = 0. This
behavior is mirrored in the depositional system, as indicated
in the right hand column in Table 2. When the non-locality
is fully biased down-stream (b = �1) the local gradient at
x = 1 is identically zero for all choices 0 < a ≤ 1 leading to

Table 1. Solutions of Limit Case Non-local Fluvial Profiles for Erosional and Depositional Systems

Contribution to
Non-Locality

Erosional Landscape 0 ≤ x ≤ 1
2

Equation (6) in Equation (1)
Depositional Landscape 1

2 ≤ x ≤ 1
Equation (6) in Equation (2)

b = �1 purely downstream h ¼ � 1� xð Þ1þa� 1
2ð Þ1þa

G 2þ að Þ +
1� xð Þa� 1

2ð Þa
G 1þ að Þ h =

1� xð Þ1þa� 1
2ð Þ1þa

G 2þ að Þ

b = 1 purely upstream h = � x1þa� 1
2ð Þ

G 2þ að Þ h =
x1þa� 1

2ð Þ1þa

G 2þ að Þ � xa� 1
2ð Þa

G 1þ að Þ

Figure 2. Fluvial profiles predicted with a non-local Exner
model (a = 0.7 in Table 1). The solid lines are the erosional
profiles and the broken lines the depositional profiles. The
colors distinguish between the limit solutions; when the
non-locality information comes purely from upstream
(b = 1) the line is black, when the non-locality is purely from
the downstream (b = �1) the line is red. Since these limits,
envelope all possible solutions, it is readily observed that a
physically meaningful solution can only be obtained if the
non-locality in the erosional domain is restricted to upstream
points and the non-locality in the depositional domain is
restricted to downstream points. Any solution obtained away
from these limits would result in a non-physical elevation
maximum and/or minimum at internal points of the domain.
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prediction of a fluvial surface that does not exhibit a (non-
physical) minimum at an internal domain point. Once any
upstream non-locality (b ≠ �1 and a ≠ 1) is introduced,
however, the local topographic gradient at x = 1 is strictly
positive requiring the occurrence of a non-physical upstream
topographic minimum. This result can be further understood
by considering the case where the non-locality is directed
fully upstream b = 1. In this case, through the definition of
the Caputo derivative in equation (5), the flux at any point is
essentially constructed from a weighted sum of up-stream
slopes. As such, if we were to approach the downstream
boundary at x = 1 in a physically correct manner, with
the negative fluvial slope monotonically increasing to zero,
we would not be able to meet the flux boundary condition
q(1) = 0. In fact, under the assumption b = 1, the only way
to meet this condition is to allow for the unphysical appear-
ance of positive slopes as we approach the downstream
boundary at x = 1.
[11] Physically, the results indicate a reversal in the

direction of morphodynamic information flow in erosional
versus depositional systems. The most obvious physical
asymmetry between erosional and depositional systems is
that in the former, channel networks are typically convergent
while in the latter they are generally divergent. Perhaps the
bias is linked to this, although the erosion-convergence and
deposition-divergence correspondence is far from exact in
nature. A stricter reading of the results is that, to the extent
that sediment transport really is non-local at landscape
scales, and that the non-locality is power-law distributed, the
limiting non-local process in erosional landscapes is sedi-
ment delivery to the point in question, while the limiting
non-local process in depositional landscapes is removal of
material from the point in question. One might say that
erosional systems are import-controlled while depositional
systems are export-controlled.

6. Conclusion

[12] The central contribution of this work is to show
that a direct consequence of the emerging non-local models
of landscape dynamics based on the fractional calculus
[Schumer et al., 2009; Foufoula-Georgiou et al., 2010;
Voller and Paola, 2010] is a strict directional dependence
that is reversed between erosional and depositional systems.
As such, experimental or field measurement of the differ-
ence in directional control between depositional and ero-
sional systems would be a decisive step toward confirming
the physical validity of current non-local sediment transport
models. In this respect preliminary analyses are generally
positive. Modeling of erosional systems with fully biased
up-stream non-locality explains many observed features in

erosional hillslope profiles [Foufoula-Georgiou et al.,
2010]. Likewise a fully biased downstream model has been
shown to explain anomalies in fluvial profiles formed in
experimental depositional basins [Voller and Paola, 2010].
[13] It is important to recognize, however, that the results

obtained here are for a steady-state equilibrium landscape. In
landscapes undergoing a transient change—e.g., following
a change in a forcing variable such as base-level—the long
waiting times in the sediment motions may lead to time
fractional derivatives in the governing transport equation
[Schumer et al., 2009]. Experimental evidence for the exis-
tence of truncated heavy-tailed waiting times is reported in
depositional systems under steady-state conditions [Ganti
et al., 2011]. However, this non-locality in time will not
affect the results presented here as the steady-state solutions
remain the same for both time-fractional and non time-
fractional cases; the difference being in how fast the steady-
state is reached.
[14] In closing we note that many fundamental problems

in landscape science can be posed as grand challenge inverse
problems, in which one is attempting to interpret landscape-
forming dynamics and initial and forcing conditions from
spatial and temporal field data, either in extant landscapes or
sedimentary records. Inverse problems are inherently ill
conditioned and an understanding of data and information
flows is thus vital to both interpretation and understanding
error propagation. In this context, recognizing the potential
for a mirror difference in direction of the flow of information
between an erosional and depositional system is important
for any inverse geological analysis.
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