
1. Introduction
Alluvial rivers are dynamic and mobile landforms. From the timescale of a single flood to geologically paced 
environmental shifts, the positions, sizes, and shapes of alluvial rivers are in constant states of translation and 
deformation. These translations and deformations constitute the mobility of a river system. River mobility poses 
flood and erosion risks to more than 2.5 billion people living on large river floodplains (Best, 2019) and regulates 
the residence time of organic carbon in terrestrial environments (Repasch et al., 2021; Scheingross et al., 2021; 
Torres et al., 2017). Climate change and human modification are causing significant shifts in water and sediment 
fluxes at regional and global scales (Dethier et al., 2022; D. Li et al., 2021). However, the long-term impact of 
these changes on river mobility remains unconstrained.

River mobility encompasses morphodynamic processes active at spatial scales ranging from a single channel bank 
(bank-scale), multiple channel-bars (reach-scale), and ultimately across entire floodplains (floodplain-scale). 
The multi-scale nature of fluvial processes constitutes a hierarchy of landforms and active topography (e.g., 
Ganti et  al.,  2020). The process hierarchy can vary drastically across rivers. For example, meandering rivers 
feature bank-scale migration (Hickin & Nanson, 1984; Mason & Mohrig, 2019) and reach-scale channel-bend 

Abstract Rivers are the primary conduits of water and sediment across Earth's surface. In recent 
decades, rivers have been increasingly impacted by climate change and human activities. The availability of 
global-coverage satellite imagery provides a powerful avenue to study river mobility and quantify the impacts 
of these perturbations on global river behavior. However, we lack remote sensing methods for quantifying 
river mobility that can be generally applied across the diversity of river planforms (e.g., meandering, 
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as damming and deforestation. These ongoing and future impacts can influence how quickly rivers move across 
the floodplain, that is, river mobility. Because there are many kinds of rivers that move in a variety of ways, 
it is difficult to measure river mobility in a manner that is consistent for all rivers. This study overcomes this 
difficulty with a new method of analysis for satellite images, which builds upon recent advances in laboratory 
studies. We show that our measurements accurately capture how rivers move as they erode their banks, 
deposit sandbars, and periodically jump course. Our new methodology provides an opportunity to compare 
river mobility across the globe and identify regions where rivers are responding to climate change and human 
intervention.
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cutoff (Ashmore, 2013; Constantine & Dunne, 2008; Hooke, 2004), braided rivers evolve through bank-scale 
downstream bar accretion and reach-scale thread abandonment (Ashmore, 2013), and river delta channels peri-
odically avulse at the floodplain-scale (Ashmore, 2013; Brooke et al., 2022; Ganti et al., 2014; Jerolmack & 
Swenson, 2007). Previous work has investigated mobility processes in different planform environments using 
numerical models (Chadwick et al., 2019, 2020; Ielpi et al., 2023; Jerolmack & Mohrig, 2007; H. K. Martin 
& Edmonds, 2022; Murray & Paola, 1997; Williams et al., 2016), physical experiments (Bryant et al., 1995; 
Chadwick et al., 2022; Ganti et al., 2016a, 2016b; Limaye, 2020; van de Lageweg et al., 2014), and detailed 
site-specific fieldwork (Dietrich & Smith, 1983; Micheli & Larsen, 2011).

The growing volume and availability of global-coverage multispectral remote imagery provides an unprecedented 
opportunity to study river behavior and test mechanistic insight gained from experiments and theory at global 
scales (Figure 1). This surge in data availability has motivated large-scale studies on river meandering (Ahmed 
et  al.,  2019; Constantine et  al.,  2014; Ielpi & Lapôtre,  2020) and river avulsion (Brooke et  al.,  2020,  2022; 
Valenza et al., 2020). However, most existing studies focus on a single mobility process (e.g., migration or avul-
sion) and are susceptible to timescale and spatial biases when comparing across varying measurement windows. 
Perhaps the most notable timescale bias is that shorter measurement windows result in systematically higher 
rates of river mobility (Donovan & Belmont, 2019), analogous to the Sadler effect documented in a variety of 
settings in geomorphology and sedimentology (Finnegan et al., 2014; Ganti et al., 2016b; Sadler, 1981; Sadler 
& Jerolmack, 2015). Spatial bias can also arise when mobility is measured over different length-scales because 
mobility can vary systematically along a given river reach (e.g., bend apices on a meandering river tend to migrate 
faster than straight sections) (Y. Li & Limaye, 2022).

Many of the existing methods to quantify river mobility from remote sensing are designed for single-thread 
meandering rivers and focus specifically on channel-bank migration (Donovan & Belmont,  2019; Donovan 
et al., 2021; Schwenk et al., 2017; Sylvester et al., 2019). Relatively few methods are designed for comparing river 
mobility across different river planforms, and generally limited to paired comparisons between two timesteps 
(Langhorst & Pavelsky, 2023; Nagel et al., 2022; Pekel et al., 2016; Rowland et al., 2016). This is problematic 
because multi-thread channels are pervasive worldwide and constitute some of the world's largest river systems 
(Galeazzi et al., 2021; Latrubesse, 2008). Existing morphology-independent methods are only designed to quan-
tify bank-scale migration and ignore reach and floodplain scale processes like channel-bend cutoff and avulsion 
(e.g., Chadwick et al., 2023). There is a crucial need for planform-independent remote sensing methods that can 
integrate reach- and floodplain-scale river mobility, especially since these are the scales over which we expect 
natural environmental gradients and anthropogenic climate change to impact rivers.

Laboratory flume studies have developed methodologies for quantifying reach- and floodplain-scale river mobil-
ity (Bufe et al., 2019; Wickert et al., 2013). These methods are area-based, meaning that they quantify river 
mobility in terms of how the plan-view of channelized areas and unchannelized areas (i.e., floodplains) shift over 
time. Experimental area-based methods have been used to quantify the migration and avulsion of laboratory-scale 
(<1-m wide) braided rivers for hundreds of hours, allowing for the development of depositional landscapes (i.e., 
a simulated fluvial fan) and many cycles of fluvial-surface reworking (Hajek et al., 2014; Kim et al., 2006; J. 
Martin et al., 2009; Sheets et al., 2007; Tal & Paola, 2007). The analogous timescale for natural systems is on 
the order of hundreds to thousands of years (Ganti et al., 2020; Hajek & Straub, 2017)—timescales inaccessible 
by remote sensing. Furthermore, experimental area-based methods are designed in a dimensionless framework 
built with a knowledge of the true extent of the fluvial surface (i.e., the floodplain). In experimental settings, the 
fluvial surface generally grows to the size of the flume, but in natural rivers, this scale is difficult and sometimes 
impossible to constrain via remote sensing.

In this manuscript, we upscale area-based methodologies developed in experiments to the field-scale and pres-
ent a generalized remote-sensing framework to quantify time- and area-integrated river mobility, which can 
be used to examine river behavior worldwide. Our proposed framework solves the single-process limitation of 
many other river mobility measurements by integrating across the morphodynamic hierarchy and simultaneously 
quantifies river mobility at the reach, and floodplain scales. Our framework characterizes the rates and areas 
over which (a) the floodplain is reworked and (b) the channel threads reorganize. We use numerical models of 
specific river processes to show that our metrics can accurately reproduce known rates of channel migration, 
channel-bend cutoff and avulsion. We then highlight example applications of our mobility framework to differ-
ent river planforms (e.g., meandering and braided) and different river mobility processes (e.g., migration and 
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avulsion). We conclude with an examination of the sensitivity and constraints of the framework with respect 
to its application to 37 years of Landsat data starting with Landsat 5. Together, area-based measurements that 
aggregate bank, bend, and avulsion scale processes can be leveraged to examine the sensitivity of river evolution 
in response to large-scale gradients in environmental signals and relate long-term river behavior to floodplain 
carbon storage.

2. Mobility Framework
Area-based mobility measurements were first developed in laboratory settings to evaluate the relative impor-
tance of water discharge, sediment flux, and basin subsidence in setting the pace of river mobility (Bufe 
et al., 2016, 2019; Cazanacli et al., 2002; Kim et al., 2010; Wickert et al., 2013). We upscale the area-based 
framework of Wickert et al. (2013) for remote sensing data, where river mobility is measured from time series 
of binary images representing the positions of the active river channel—called channel masks. We define two 
metrics: (a) floodplain reworking, which measures the cumulative reworking of the floodplain area and (b) chan-
nel-overlap decay, which measures channel reorganization in terms of the relative overlap of channelized areas 
between images. While the rates and areas obtained using our area-based metrics cannot be explicitly tied to 
specific river processes, they have the benefit of integrating across all reach- and bank-scale effects, providing a 
cumulative measurement of river mobility.

Our mobility measurements are made in a time-integrated framework from the series of channel masks. Consider 
a time series of n channel masks capturing the evolution of a river over some timeframe T. We use each of these 
channel masks as a baseline for comparison to subsequent images, whereby we consider river evolution from the 
baseline channel mask (k ∈ [1,n − 1]) to the latest-available channel mask (i.e., nth image). For each baseline, 
we create image sets containing i ∈ [0,n − k] images and i = 0 denotes the baseline channel mask. For each of 
these time series, we compare the baseline channel mask to every subsequent channel mask within the time series, 
which produces 𝐴𝐴

𝑛𝑛(𝑛𝑛+1)

2
− 1 measurements for two mobility metrics. This approach is time-integrated because each 

of the n channel masks is used to compare with all channel masks that follow it, and mobility is quantified from 
the complete set of all combinations.

Figure 1. Location map and example images of study reaches. (a) World map with study reaches highlighted. Larger shapes 
are the rivers discussed in detail (Pink square—South Saskatchewan, Blue circle—Trinity, and Green triangle—Beki). Small 
gray circles are locations of meandering rivers highlighted in Section 3.2.3. Small red circle is the Ucayali River. Small 
yellow circle is the Rio Bermejo. Landsat images (SWIR, NIR, and Green RGB-composites) for the (b) South Saskatchewan 
River, (c) Trinity River, and the (d) Beki River avulsion.
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2.1. Floodplain-Scale Mobility: Floodplain Reworking

Floodplain reworking captures the rates and scales at which the active channel accesses the floodplain. For a 
given baseline image k, we calculate the cumulative reworked floodplain area (AR,i) in image i as follows:

𝐴𝐴𝑅𝑅𝑅𝑅𝑅 = 𝐴𝐴𝑑𝑑 − 𝐴𝐴𝑅𝑅𝑅 (1)

where Ad is the total area of dry pixels in the baseline channel mask and Ai is the dry-pixel area that has yet to be 
visited by the channel in the first i channel masks. The cumulative reworked floodplain area, AR,i, is the dry-pixel 
area in the baseline channel mask that has been visited by channel water in ∆t (Figure 2). The symbol ∆t denotes 
the duration of river evolution captured by any arbitrary pair of images, and it varies from ∆t = 0 (when a baseline 
image is compared to itself) to ∆t = T (when k = 1 is chosen as the baseline image and it is compared to the nth 
image). When a baseline image is compared to itself (∆t = 0) then none of the dry pixels have been visited, and 
so Ad = Ai and AR,i = 0. When the baseline image is compared to a later image with increasing Δt then more dry 
pixels will have been visited and so Ai will decrease compared to Ad (Ad > Ai) and AR,i will monotonically increase.

We repeat the computation in Equation 1 for different baseline images k ∈ [1,n − 1]. We then take the ensem-
ble average of AR,i across all k observations for every ∆t to capture the characteristic growth in the cumulative 
floodplain reworking area over time. We describe the growth in floodplain reworking area using an exponential 
function:

𝐴𝐴𝑅𝑅𝑅𝑅𝑅 = −𝑃𝑃𝑅𝑅𝑒𝑒
−𝐶𝐶𝑅𝑅∆𝑡𝑡 + 𝑃𝑃𝑅𝑅𝑅 (2)

where the overbar denotes the ensemble operator. Equation 2 has an x-intercept at 0 and grows at a rate, CR [1/T], 
toward an asymptote PR [L 2]. The growth constant CR [1/T] represents the rate at which a river accesses the 
adjacent floodplain. In cases when the data are accurately modeled by Equation 2, the asymptote, PR, provides a 
measure of the active floodplain area. Consequently, the 3-e-folding time of the growth constant, 𝐴𝐴

3

𝐶𝐶𝑅𝑅

 , here called 

Figure 2. Hypothetical application of the area-based mobility framework. Changes are not meant to highlight any specific 
process. For the evolution of an arbitrary “river” from (a) ∆t = 0, (b) t1, and (c) t2, we calculate the cumulative number of 
unvisited floodplain pixels, Ai, in panels (d–f) (black pixels). The cumulative reworking area. AR,i is calculated as the baseline 
floodplain area, Ad, here 27, subtracted by Ai. We also show the calculation of the average area changed, Di in panels (g–i). 
The channel overlap area, AM,i, is calculated as the baseline wetted area, Aw, here 9, subtracted by Di.
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the reworking timescale, TR, represents the time necessary for the river to reach 95% of the estimated active 
floodplain size.

The estimated coefficients from Equation 2 describe the rate at which a river reworks previously non-water pixels 
(i.e., the floodplain) over time. However, it is not straightforward to directly compare these parameters across 
rivers. There is a scale-dependency in PR where rivers with larger wetted areas have higher PR values (Figure 
S1 in Supporting Information  S1). Scale dependency is pervasive in river morphodynamic analysis and it is 
common practice to normalize parameters by a characteristic length scale, often the channel width (Hickin & 
Nanson, 1984). Laboratory applications of area-based mobility normalize measurements relative to the size of the 
experimental surface area (Bufe et al., 2019; Wickert et al., 2013), but we cannot apply the same normalization 
to natural rivers because the equivalent fluvial surface area is unknown. In our adaptation, PR is an area (km 2) 
so we normalize by the median channel area 𝐴𝐴 𝐴𝐴𝑤𝑤. This provides an estimate of the active floodplain size in terms 
of the  number of channel areas it contains, 𝐴𝐴

𝑃𝑃𝑅𝑅

𝐴𝐴𝑤𝑤

 [–], here called the normalized active floodplain area, 𝐴𝐴 𝐴𝐴
∗

𝑅𝑅
 . The 

parameter CR and the corresponding reworking timescale are not scale dependent (Figure S1 in Supporting Infor-
mation S1). A comparison between the reworking timescale and the normalized floodplain can help differentiate 
signals that arise from more extreme floodplain expansion or faster rates of reworking.

Traditional methods quantity bank migration using linear rates, which are either reported as the number of chan-
nel widths migrated per year or the time necessary to migrate one channel width (Constantine et al., 2014; Hickin 
& Nanson, 1984; Ielpi & Lapôtre, 2020). To compare our mobility rates with linear migration rates of rivers, we 
define a linear floodplain reworking constant [yr −1] as follows:

𝑅𝑅 = 𝐶𝐶𝑅𝑅𝑃𝑃𝑅𝑅∕𝐴𝐴𝑤𝑤, (3)

This constant is the absolute slope at the intercept of Equation 2 when normalized by 𝐴𝐴 𝐴𝐴𝑤𝑤 .

2.2. Reach-Scale Mobility: Channel Overlap Decay

The channel overlap decay term describes the characteristic decay in the overlapping area of the river chan-
nel through time. We calculate the channel overlap area (AM,i) for image i ∈ [0,n − k] compared to baseline 
k ∈ [1,n − 1] following:

𝐴𝐴𝑀𝑀𝑀𝑀𝑀 = 𝐴𝐴𝑤𝑤 −𝐷𝐷𝑀𝑀𝑀 (4)

where Aw is the wetted channel area in the baseline channel mask, and Di is the area that has changed state when 
comparing the ith channel mask to the baseline channel mask (Di = [Di,dry−wet + Di,wet−dry]/2 where the subscript 
denotes a change from dry to wet and vice versa). Unlike the unreworked area (Ai), the changed area (Di) is not a 
cumulative measure but rather the area of the channel that is not overlapping between two images. The channel 
overlap area, AM,i, is the channel area in the ith channel mask that did not change state when compared to the 
baseline channel mask (i.e., wet pixels remained wet; Figure 2). At ∆t = 0 when i = 0, Di = 0 and AM,i = Aw. At 
∆t > 0 when i > 0, Di > 0 and AM,i decreases with ∆t. Like the calculations of AR,i, we evaluate Equation 4 using 

𝐴𝐴
𝑛𝑛(𝑛𝑛+1)

2
− 1 pairs of channel masks by changing the baseline image.

We take an ensemble average of AM,i for every ∆t and describe the decay using an exponential function:

𝐴𝐴𝑀𝑀𝑀𝑀𝑀 =

(

𝐴𝐴𝑤𝑤 − 𝑃𝑃𝑀𝑀

)

𝑒𝑒
−𝐶𝐶𝑀𝑀∆𝑡𝑡 + 𝑃𝑃𝑀𝑀 (5)

where CM [1/T] is the decay rate and PM [L 2] is the asymptote value. The asymptote, PM, represents an esti-
mated long-term memory of the channel area. In other words, PM is the characteristic channel area that remains 
channel-area through time (i.e., a characteristic memory). This value should be low with significant channel-belt 
drift, and high when channel thread reorganization consistently returns the channel the previously visited loca-
tions. The 3-e-folding time of the decay constant, 3/CM, here called the overlap-decay timescale (TM), represents 
the time necessary for the river network to lose 95% of its characteristic overlap. Together, PM and CM hold infor-
mation about the area of planform consistency and the rate of channel thread re-organization.

We can use the estimated coefficients from Equation 5 to compare mobilities across rivers. To account for the 
scale dependence in PM (Figure S1 in Supporting Information S1), we normalize PM by the average channel area, 
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𝐴𝐴 𝐴𝐴𝑤𝑤 . We report 𝐴𝐴 1 −
𝑃𝑃𝑀𝑀

𝐴𝐴𝑤𝑤

 , called the normalized long-term decay area (𝐴𝐴 𝐴𝐴
∗

𝑀𝑀
 ), to describe the normalized wetted chan-

nel area expected to change state. We can compare the overlap decay timescale and the normalized long-term 
decay area to describe the timescale of channel-thread overlap loss relative to the expected long-term shift in 
channel position. Finally, we also define a linear channel-overlap-decay constant as follows:

𝑀𝑀 = 𝐶𝐶𝑀𝑀

(

1 − 𝑃𝑃𝑀𝑀∕𝐴𝐴𝑤𝑤

)

 (6)

which is the absolute slope at the intercept of Equation 5 when normalized by 𝐴𝐴 𝐴𝐴𝑤𝑤 .

2.3. Challenges of River Scale and Stage in Reach-Scale Mobility Measurements

While our framework builds upon previous work (Bufe et al., 2019; Wickert et al., 2013), we had to make two 
important methodological considerations that enable general applicability to remotely sensed imagery. First, 
limited time sampling in remote sensing applications implies that the full extent of natural active fluvial surfaces 
(active floodplain) is often ambiguous. For example, only a fraction of the active floodplain area that may be 
worked by the river over centennial timescales may be captured over the maximum of 37 years starting with 
Landsat 5 data (Wulder et al., 2019). This is problematic because experimental metrics measure mobility relative 
to the normalized size of the experimental fluvial surface—a known and well-constrained quantity in laboratory 
applications, but an unknown in satellite observations. Here, we redefine the floodplain reworking and channel 
overlap decay terms such that they can be applied to natural rivers over remote sensing timescales without any a 
priori assumptions about the size of the fluvial surface area. In effect, scale is an open parameter within our anal-
ysis. We fit two scale terms, the estimated active floodplain area, PR, and the long-term channel area memory, PR, 
from the mobility measurements. Floodplain-scale processes can be directly compared to bank-scale processes 
using the area-normalized terms, R and M. We provide a more thorough examination of the scale in the sensitivity 
analyses (Sections 5.1 and 5.2).

The second primary consideration when upscaling the experimental framework to natural data is that channel 
masks for natural rivers will capture variations in river stage, while in the experimental applications, channel 
masks can be generated at consistent discharges. Mobility measurements taken from channel masks that capture 
variations in river stage may be misleading when variations in wetted channel area unrelated to mobility will be 
captured within the area-based metrics. Unfortunately, while there is no easy solution to this consideration, we 
suggest several techniques to minimize its effect. These include using median composites which average pixel 
surface reflectance values over multiple images, using data from similar periods of the hydrograph to capture 
consistent flood stages, or even omitting masks from the time series whose wetted areas significantly differ from 
the average. Additionally, long-term drift in wetted channel area could potentially bias mobility measurements. 
We use time-integrated baseline-comparisons to help mitigate against this potential source of bias. We provide an 
exploration into the susceptibility of the metrics to flood-stage variation in the sensitivity analyses (Section 5.3).

3. Materials and Methods
3.1. Application of the Framework to Numerical Models

Reduced complexity models of natural river processes have long provided insights into the controls on river 
mobility (Howard & Knutson, 1984; Liang et al., 2015; Murray & Paola, 1997; Sun et al., 1996). Here, we use 
numerical models to isolate and measure the relation between modeled rates of river mobility and the area-based 
mobility metrics presented in Section 2. Simulated binary raster data generated by numerical models are largely 
free of the natural variability that might confound applications to natural systems. We use the numerical models 
to validate the relation between “faster” and “slower” river mobility and our proposed floodplain reworking and 
overlap decay metrics.

3.1.1. Meandering River Model

We used a centerline evolution model to examine lateral migration and channel-bend cutoff in a simulated mean-
dering river. For meandering rivers, where it is reasonable to assume that the evolution of the channel centerline 
reflects the coordinated trajectories of channel banks (Mason & Mohrig,  2019), centerline evolution models 
mimic the behavior of natural process. We used an implementation of a centerline evolution model (Howard & 
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Knutson,  1984) ported to Python (https://github.com/zsylvester/meanderpy) which accurately reflects natural 
observations that channel curvatures drive lateral migration rates (Sylvester et al., 2019). The model parameters 
allow us to explicitly set the lateral migration rates and the frequency of channel-bend cutoffs. Migration rates 
along the channel centerline are multiplied by a migration constant, kl, which sets the magnitude of lateral chan-
nel migration. Higher kl values correspond to higher migration rates for the same curvature. Thus, by varying kl, 
we set the river to migrate at different rates. Channel-bend cutoffs are included in the model as a threshold process 
whereby a channel bend will “cutoff” when the bend inlet and outlet portions of the centerline meet a predefined 
threshold proximity, cl.

We modeled the centerline evolution of a river with a constant width of 200 m and depth of 6 m over 40 bends. 
To examine different lateral migration rates, we ran the model with 𝐴𝐴 𝐴𝐴𝐴𝐴 ∈ [2, 4, 5, 10, 15, 20, 25]

[

m∕yr

]

 and held 
cl = 2 (see Movie S1). To examine different cutoff thresholds, we ran the model with cl ∈ [1, 2, 3, 4, 5, 6, 7, 8] 
with 𝐴𝐴 𝐴𝐴𝐴𝐴 = 25 m∕yr (see Movie S2). For each run, we initialized the channel by running the model for 4,000 time-
steps (timestep duration = 1/10th of a year) with kl = 25 and cl = 2 before running the model for an additional 
4,000 timesteps with set values of kl and cl. We saved the x and y coordinates of the channel centerline every 10th 
iteration—corresponding to a yearly equivalent sampling—starting at the 700th timestep.

We made binary channel masks to measure the river mobility for each model run by projecting the centerline x 
and y coordinates onto a stationary 175 by 1,450 pixel grid with a top left corner at the model lifetime minimum 
x-coordinate and maximum y-coordinate and a bottom right corner at the model lifetime maximum x-coordinate 
and minimum y-coordinate. This produced 330 binary raster images with a resolution of roughly 31 × 31 m model 
equivalent. We then performed a 3-pass dilation of the binary centerline to produce a “river” of roughly 6-pixel 
width (186 m model equivalent). A channel-mask time series of 330 years is significantly longer than anything 
available for natural data. To make our model experiment comparable to natural data, we sampled 37-year blocks 
from the full set of channel masks to match the maximum length of the Landsat archive. For each 37-year block, we 
then measured the growth in AR,i and decay in AM,i and estimated the parameters PR, CR, PM, and CM. From these, 
we evaluate the functional dependence of TR on 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
 and TM on 𝐴𝐴 𝐴𝐴

∗

𝑀𝑀
 as well as the resulting R and M. We performed 

the 37-year sampling 20 times for each kl and cl value and report the median values in the resulting metrics.

3.1.2. Fan-Scale Avulsion Model

We used a cellular model of fan-scale river avulsion to examine the sensitivity of the mobility metrics to the 
occurrence and frequency of avulsions. Cellular avulsion models are driven by the super-elevation of channel-belts 
and topographic differences across the fan surface (Jerolmack & Mohrig,  2007). We used an implementation 
of a fan-scale avulsion model (H. K. Martin & Edmonds,  2022), which was designed to incorporate variable 
channel-belt reoccupation dynamics and variable avulsion trigger frequencies. We ran the model using different 
avulsion periods, TA ∈ [5, 10, 50, 100, 150, 200, 300, 500] yr, where higher TA indicates less frequent frequencies 
(see Movie S3). Other model parameters were left constant (Table S1 in Supporting Information S1) to force the 
fan to evolve through compensational stacking (Straub et al., 2009)—new fan lobes preferentially build out in topo-
graphic lows—and eliminate the pre-dominance of channel reoccupation in guiding avulsion pathways. We ran the 
model for 100,000 years with a timestep of 10 years (10,000 iterations) and convert the model iterations into 1,000 
binary raster images of channel-belt locations taken every 100 years. We subsample the 1,000 binary images into 
blocks of 40, which represent a model equivalent period of 4,000 years. This tends to capture sufficient avulsions 
for each avulsion trigger frequency such that representative mobility metrics can be calculated. For the blocks of 
40 channel masks, we measured AR,i and AM,i, estimated the parameters PR, CR, PM, and CM, and calculated the 
resulting R and M. We repeat the subsampling 20 times and report the median values of the resulting metrics.

There are two considerations in using this class of model to validate equivalent modern measurements. First, these 
models simulate channel-belts as a whole and do not resolve cross-sectional and channel bank-scale processes. 
Second, these models often simulate equivalent periods of time on the order of 10 5–10 6 years, which is not a natu-
rally observable timeframe. Regardless, this class of fan-scale models are the only numerically efficient means to 
examine how variable avulsion frequencies alone correspond to our mobility metrics.

3.2. Application of the Framework to Remote Sensing Data

Our mobility framework can be applied to channel mask time series derived from multiple different sources (e.g., 
Landsat, Planet, Sentinel-2). Here, we utilized the Landsat archive, which has the longest freely available record 
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of multispectral surface reflectance and rich documentation of surface water analyses (e.g., Pekel et al., 2016). 
Landsat data also provide the best opportunity to quantify mobility across the globe at multi-decadal timescales. 
We focused on well-studied meandering and braided rivers, the Trinity and South Saskatchewan Rivers as well 
as a fan-scale avulsion from the Beki River, which provides a good counterpart to gradual migration processes. 
We describe below the methods used to generate input data sets of channel mask time series, how we define the 
area in which we evaluate the mobility, and how we specifically approached each example river process and type.

3.2.1. Generating Channel Mask Time Series From Landsat Data

We leveraged 37  years of multi-spectral atmospherically corrected surface reflectance data derived from the 
Landsat 5 and onwards to generate the time series of binary channel masks. There is a diversity of proven tech-
niques to generate binary masks of surface water from remote imagery (Isikdogan et al., 2017, 2020; Jones, 2019; 
McFeeters, 1996; Pavelsky & Smith, 2008; Pekel et al., 2016; Rowland et al., 2016; Xu, 2006; K. Yang et al., 2014; 
X. Yang et al., 2019). While the specific method of generating input channel masks is not the focus of this study, 
the accuracy of correctly classified river water can impact river mobility measurements. Here, we followed the 
methodology used for USGS Dynamic Surface Water Extent (DSWE) products (Jones, 2019), which is an estab-
lished technique to classify global surface water and is specifically designed for Landsat data. We generated 
channel masks using a two-step process that (a) generates a water mask indicating the presence or absence of 
surface water and (b) reduces the water mask to a channel mask that ideally only contains water associated with 
the active river system.

We used Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI/TIRS atmospheric corrected surface reflectance 
data sets available through Google Earth Engine (Gorelick et  al.,  2017) to generate water masks. Following 
Google Earth Engine's suggested strategy, we masked surface reflectance data for clouds and cloud shadows 
using the pixel quality assurance bands available in the Earth Engine-provided imagery (“Landsat Algorithms | 
Google Earth Engine, 2021”). From 1985 to 2021, we reduced the multiple images over a given area collected 
within each single year using a median aggregation. This provided annual median composite 7-band images 
across Blue to Shortwave-Infrared (SWIR) wavelengths (Figure 3a). We perform the median annual reduction on 
the assumption that if enough images are captured in a single year, the composite image minimizes intra-annual 
variability in river stage (Schwenk et al., 2017). With the annual composite images, we followed the methodology 
used for USGS DSWE products (Jones, 2019) as implemented in Python (X. Yang et al., 2019) to generate yearly 
composite products of surface water presence. The DSWE algorithm leverages a decision-tree structure between 
multiple spectral indices, and allows us to vary the threshold water level for each river and provides four different 
water classifications—high-confidence water, medium-confidence water, conservative partial surface water, and 
aggressive partial surface water (Figure 3b). We generated four channel masks corresponding to these four water 
classification thresholds and then manually selected the water classification confidence level that most accurately 
captured river surface water (Figure S2 in Supporting Information S1).

The DSWE algorithm provides products of classified surface water, which may include all types of inland waters. 
We reduced the surface water masks to channel masks following an established method (X. Yang et al., 2019), 
which geolocates the water mask raster product and collocates vector products of predicted channel location 
(Allen & Pavelsky, 2018; Yamazaki et al., 2019). We then defined a distance buffer (e.g., 1 km) between the 
predicted channel locations and the water mask and filter out any classified water that is not hydrologically 
connected to water adjacent to the predicted channel location. This procedure has been used with reliable success 
for global products of river properties (Langhorst & Pavelsky, 2023).

3.2.2. Quantifying Channel Overlap Decay and Floodplain Reworking Terms

We quantified the floodplain reworking and channel overlap from the channel masks derived from, at maximum, 
37 years of Landsat data (e.g., 1985–2021). We defined an arbitrary study area for each study location that typi-
cally spans a cross-stream width larger than the apparent active channel-belt (or fluvial fan in the case of fans) and 
a downstream length of a characteristic reach-scale (at least three channel bends in a meandering river or 3 bar 
lengths in a braided river). The cross-stream length of the fluvial surface area does not have any effect on the 
mobility measurements (see Section 5.1). The downstream length of the fluvial area defines the length-scale over 
which river mobility is integrated. We first define the arbitrary fluvial surface area, then acquire yearly median 
composite images of the available Landsat data, and then generate channel masks through the methods outlined 
in Section 3.2.1.
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For each channel mask set, we measured AR,i (Equation 1) and AM,i (Equation 4) using the k baseline channel 
masks. We measured all values (Aw, Ad, Ai, Di) in reference to the pre-defined fluvial surface. For example, Aw 
and Ad are the total baseline wetted area and baseline dry area within the defined fluvial surface, respectively. 
Similarly, Ai and Di are the dry pixel area that hasn't been visited in first i channel masks, and the average area 
changed from water to dry or from dry to water, respectively (Figures 3a–3f). We then evaluated the 25th, 50th, 
and 75th percentiles of the reworked floodplain area, AR,i, (𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅25𝑡𝑡𝑡

; 𝐴𝐴𝑅𝑅𝑅𝑅𝑅50𝑡𝑡𝑡
; 𝐴𝐴𝑅𝑅𝑅𝑅𝑅75𝑡𝑡𝑡

 ) and channel overlap area, 
AM,i, (𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀25𝑡𝑡𝑡

; 𝐴𝐴𝑀𝑀𝑀𝑀𝑀50𝑡𝑡𝑡
; 𝐴𝐴𝑀𝑀𝑀75𝑡𝑡𝑡

 ) for a given ∆t. We then fit Equations 2 and 5 using a least squares optimizer to 
the 25th, 50th, and 75th percentiles of AR,i and AM,i for the range of data from i = 0 to i = n − k − 5. Because the 
number of images available decrease with ∆t, the above procedure ensures that at least five images are included 
in the estimates of 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 at every ∆t (Figures 3g and 3h). The best-fit equations to data provide estimates 
of the mobility parameters CR, PR, CM, and PM for each quantile (25th, 50th, and 75th), which quantify the uncer-
tainty in the mobility metrics for each river reach.

3.2.3. Examples of River Mobility Measurement Using the Landsat Archive

We show applications of our area-based mobility framework to three types of natural river systems. We chose 
canonical examples covering meandering rivers, braided rivers, and a river avulsion to highlight the broad 

Figure 3. Application of the mobility framework to natural data. Landsat image (SWIR, NIR, Green) of the Ucayali River, 
Peru, in (a) 1985, (b) 2000, and (c) 2021. (d) Channel masks for varying Dynamic Surface Water Extent (DSWE) thresholds 
for the 1985 image, where the difference between the most and least conservative threshold is apparent. Pixel area changes 
between (e) 1985 and 2000, and (f) 1985 and 2021. We highlight specific river processes, which may be captured within the 
channel mask area. We used conservative partial surface water as the DSWE threshold for the representative channel mask 
for this reach. (g) Measured growth in AR,i, where the gray circles are the median values (𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 ) and the gray area is the IQR 
with respect to ∆t. The solid and dotted red lines are Equation 2 fits to 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 , and 25th and 75th percentiles of AR,i with ∆t, 
respectively. The projected floodplain reworking asymptote, PR, and IQR are shown in blue. (h) Similar to (g) but showing 
the decay in AM,i with respect to ∆t.
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applicability of our framework. We use the Trinity River, USA, as a case-example because it is an exception-
ally studied meandering river with constrained bank migration rates (Mason & Mohrig, 2018, 2019; Wellmeyer 
et  al., 2005). Specifically, we use a ∼13.5 km reach of the Trinity River near Liberty, TX (Figure 1), which 
encompasses 20 channel bends resulting in a 98 km 2 study area (see Movie S4). At this location, the Trinity River 
is roughly 100 m wide with a reach-averaged centerline migration rate of 2.8 m/yr (Wellmeyer et al., 2005).

To supplement the detailed case example from the Trinity River, we also calculated area-based mobilities for 
an additional 14 meandering rivers for which we have paired measurements centerline migration rates and 
channel-bend cutoff frequencies (Figure 1). We measured the suite of mobility parameters for reach areas encom-
passing 10–20 channel bends following methods outlined in Sections 3.2.1 and 3.2.2. We chose specific loca-
tions for meandering rivers where we also have measurements of channel centerline migration rates, Mr, and 
channel width, B. Centerline migration rates, were derived from a dynamic-time warping technique of channel 
centerlines (Sylvester et  al.,  2019) from paired binary channel masks between 1990 and 2020 (Greenberg & 
Ganti, 2021). Channel-bend cutoff frequencies were measured as the total number of cutoff-events between 1985 
and 2021. Data locations, mobility measurements, and data sources are summarized in Table S2 in Supporting 
Information S1. Input channel masks from which we measured area-based mobility, centerline migration rates, 
and channel-bend cutoff frequencies are provided in the full data repository.

The South Saskatchewan River, CA, near Outlook, CA, is a canonical braided river reach and is one of the few 
locations with measured mid-channel bar migration rates (Strick et al., 2019). Additionally, there is significant 
variation in the confinement of the channel from highly confined within a valley upstream near Outlook, CA, to 
a wide floodplain downstream near Saskatoon, CA. This allows us to explore if the area-based mobility metrics 
are sensitive to observable changes in the confinement and qualitative mobility style of the South Saskatchewan 
River. We compare the area-based mobility of an 85.7 km 2 reach in the confined portion of the South Saskatch-
ewan near Outlook, CA (51.59, −107.02) (see Movie S5) to a 107.5 km 2 reach of the more sinuous section of 
the river near Saskatchewan, CA (51.89, −106.76). This provides a comparison of area-based mobility between 
multi-threaded rivers with different sinuosity values.

Finally, we also present an application of our area-based mobility metrics to a natural fan-scale avulsion with a 
focus on a 324 km 2 fluvial surface area of the Beki River, India (see Movie S6). After 2001, the Beki River began 
to avulse, completing a near complete transfer of flow by 2006 (Sah & Das, 2018). With applications to meander-
ing rivers, a braided river, and an avulsing river, we directly compare the estimated area-based mobility parame-
ters across all rivers presented in this study. We explore how the two parameter spaces, that is, TR versus 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
 and 

TM versus 𝐴𝐴 𝐴𝐴
∗

𝑀𝑀
 , as well as the resulting R and M vary across systems and the dominant processes active therein.

4. Results
4.1. Mobility Results From Application to Numerical Models

Our area-based framework captures the trends in mobility forced in the meandering river and the fan-scale avul-
sion models. We find that the exponential functions (Equations  2 and  5) accurately capture the growth and 
decay in floodplain reworking and channel overlap decay, respectively, across all migration constants, kl, in the 
meandering river model (Figures 4a and 4b). With increasing values of kl, we find that the normalized active 
floodplain area, 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
 , increases. This trend correlates with longer values of the reworking timescale, TR (Figure 4c; 

Spearman's rank correlation coefficient, ρ = 1.0; P-value < 10-10), indicating that the fastest migrating simu-
lated rivers are associated with the largest estimated active floodplain area, and the longest reworking timescale. 
The estimated linear reworking constant, R, values are also positively correlated with the migration constant 
(ρ = 0.86; P-value = 0.006; Figure 4d). Similarly, as the normalized long-term decay area, 𝐴𝐴 𝐴𝐴

∗

𝑀𝑀
 , increases, the 

overlap decay timescale, TM, decreases (Figure 4e; ρ = −0.38; P-value = 0.35), which results in a positive correla-
tion between the linear overlap decay constant, M, and kl (ρ = 0.86; P-value = 0.006; Figure 4f). This observation 
indicates that the fastest migrating simulated rivers reorganize such that they lose nearly complete overlap in their 
wetted area over relatively short timescales.

We find that Equations 2 and 5 accurately describe the data derived from the meandering river model when 
varying cutoff thresholds, cl (Figures 4g and 4h). With varying cl, both 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
 and TR increase (Figure 4i; ρ = 0.95; 

P-value = 2 × 10 −5), and cl and R are positively correlated (Figure 4j; ρ = 0.82; P-value = 0.004). The normalized 
active floodplain area is positively correlated with cutoff threshold; however, 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
 is less sensitive to changes in 
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cl when compared to the migration constant (Figure 4c). We also find that 𝐴𝐴 𝐴𝐴
∗

𝑀𝑀
 and TM are negatively correlated 

for varying cl (Figure 4k; ρ = −0.85; P-value = 0.002), and M is positively correlated with the cutoff frequency 
(Figure 4l; ρ = 0.80; P-value = 0.005). The simulated rivers with the most frequent cutoffs lose overlap of previ-
ous channel positions faster than simulated rivers with less frequent cutoffs, but the differences in normalized 

Figure 4. Numerical modeling results of channel migration, bend-cutoff, and fan-scale avulsion. Exponential growth and decay in (a) 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and (b) 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 with varying 
kl, respectively. Colors indicate model runs with varying kl with the median (dotted lines) and IQR (shaded region) trajectories. Functional dependence of (c) 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
 and TR 

with different kl, (d) R and kl, (e) 𝐴𝐴 𝐴𝐴
∗

𝑀𝑀
 and TM for different kl, (f) M and kl for all the meandering model runs with varying migration constant. Exponential growth and 

decay in (g) 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and (h) 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 for different cl, respectively. Functional dependence of (i) TR on 𝐴𝐴 𝐴𝐴
∗

𝑅𝑅
 for varying cl, (j) R on cl, (k) TM on 𝐴𝐴 𝐴𝐴

∗

𝑀𝑀
 with varying cl, and (l) M on 

cl. Exponential growth and decay in (m) 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and (n) 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 for different avulsion trigger frequency, respectively. Functional dependence of (o) TR on 𝐴𝐴 𝐴𝐴
∗

𝑅𝑅
 with varying 

avulsion trigger frequency, (p) R on avulsion trigger frequency, (q) TM on 𝐴𝐴 𝐴𝐴
∗

𝑀𝑀
 with varying avulsion trigger frequency, and (r) M on avulsion trigger frequency.
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long-term decay area are less sensitive to changes in cl, when compared to changes in kl (Figure 4i). Together, 
these modeling results indicate that our mobility framework accurately captures the relative rates and magnitudes 
of floodplain-scale processes and channel thread reorganization across varying rates of lateral migration and 
channel-bend cutoff. Further, linear mobility constants (R and M) provide metrics to compare across rivers.

For the avulsion model results, we found that Equations 2 and 5 describe the floodplain reworking and the channel 
overlap decay terms (Figures 4m and 4n). We find positive correlation between TR and 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
 (Figure 4o; ρ = 0.86; 

P-value = 0.013), and a negative correlation between the avulsion trigger frequency and R (Figure 4p; ρ = −0.75; 
P-value = 0.052). These results suggest that more frequent avulsions result in either a larger active floodplain area 
or a faster rate to rework the active floodplain area. In contrast to the meandering model results, we find a posi-
tive correlation between 𝐴𝐴 𝐴𝐴𝑀𝑀 and𝐴𝐴

∗

𝑀𝑀
 (Figure 4q; ρ = 0.79; P-value = 0.036). For larger avulsion trigger periods, 

the decay in 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 often appears linear and results in negative estimated PR values as the exponential attempts to 
mimic a linear function (Figure 4n). We find a negative correlation between the avulsion trigger frequency and 
M (Figure 4r; ρ = −1.0; P-value < 10 −10), suggesting that more frequent avulsions result in a higher M value. 
Together, these results indicate that the mobility framework can describe the frequency and spatial character of 
river avulsions, and that linear mobility constants are sensitive to this specific mobility process.

4.2. Mobility Results From Application to Remotely Sensed Rivers

4.2.1. Results From Application of the Mobility Framework to Meandering Rivers

Results indicate that the mobility metrics successfully quantify the rates of morphodynamic processes in natural 
meandering rivers (Figure 5). For the Trinity River, we find that 𝐴𝐴 𝐴𝐴𝑤𝑤 is 1.94 ± 0.03 km 2 (mean and standard error) 
averaged across the 37 years of annual composite imagery (Figure 5a). Qualitatively, the time series of channel 
masks depict gradual single-thread migration, including a channel bend cutoff at the northern end of the reach 
(Figure 5b). Equation 2 describes the exponential growth in 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 for the 25th (R 2 = 0.98), 50th (R 2 = 0.99), and 
75th percentiles (R 2 = 0.97). The estimated CR ranged between [0.012, 0.093] yr −1 with a median of 0.057 yr −1, 
and the estimated PR ∈ [2.54, 7.01] km 2 with a median of 2.80 km 2. We estimated a normalized floodplain area of 

𝐴𝐴 𝐴𝐴
∗

𝑅𝑅
∈ [1.31, 3.61] with a median of 1.44 and floodplain reworking timescale of TR ∈ [32.3, 250] yr with a median 

of 52.6 yr. The estimated R ∈ [0.044, 0.122] yr −1 with a median R = 0.082 yr −1.

The channel overlap decay describes the decay in 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 (Equation 4) across the 25th (R 2 = 0.66), 50th (R 2 = 0.93), 
and 75th percentiles (R 2  =  0.92). The estimated 𝐴𝐴 𝐴𝐴𝑀𝑀 ∈ [0.021, 0.292]yr

−1 with a median 𝐴𝐴 0.087 yr
−1 and 

𝐴𝐴 𝐴𝐴𝑀𝑀 ∈ [−0.045, 0.888] km
2 with a median of 𝐴𝐴 0.856 km

2 , which corresponds to a normalized long-term decay 
area of 𝐴𝐴 𝐴𝐴

∗

𝑀𝑀
∈ [0.542, 1.02] with a median of 0.559. The channel overlap decay timescale is 𝐴𝐴 𝐴𝐴𝑀𝑀 ∈ [10.3, 142.9]  yr 

with a median of 34.5 yr. The measured channel overlap decay constant is 𝐴𝐴 𝐴𝐴 ∈ [0.021, 0.158]yr
−1 with a median            

𝐴𝐴 0.049 yr
−1 .

We also find that the floodplain reworking constant and channel overlap decay constant are consistent with the 
estimated migration rates of the Trinity River derived from centerline-based methods. A published migration rate 
of 2.8 m/yr (Wellmeyer et al., 2005) corresponds to a width-normalized migration rate of 0.028 𝐴𝐴 𝐴𝐴𝐴𝐴

−1 , which is 
comparable to the linear rate constants, R and M, estimated from channel mask time series.

Results also reveal that R and M are correlated to independent measurements of river mobility in 15 natural mean-
dering rivers. Both the linear floodplain reworking constant (Equation 3) and the linear channel overlap decay 
constant (Equation 6) correlate to width-normalized migration rates, calculated as the reach-averaged centerline 
migration rate, Mr, divided by the reach-averaged channel width, B (Figures 5e and 5f). The spearman rank corre-
lation coefficients between R and 𝐴𝐴

𝑀𝑀𝑀𝑀

𝐵𝐵
 and M and 𝐴𝐴

𝑀𝑀𝑀𝑀

𝐵𝐵
 are ρ = 0.6 (P-value = 0.023) and ρ = 0.55 (P-value = 0.43), 

respectively. The estimated R and M are also associated with the number of channel-bend cutoffs in each of these 
15 rivers (Figures 5g and 5h). The spearman rank correlation coefficients between the number of cutoffs and R 
and M are ρ = 0.66 (P-value = 0.010) and ρ = 0.63 (P-value = 0.015), respectively. Together, these results indi-
cate that the mobility metrics capture trends in both gradual migration rates and channel cutoff frequency across 
a diverse set of meandering rivers.

4.2.2. Results From Application of the Mobility Framework to a Braided River

Results from the application of the mobility framework to the South Saskatchewan River demonstrate that 
area-based mobility metrics successfully capture variations in mobility in a braided river (Figure 6). We examine 
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a confined reach near Outlook, CA (Figure 6b) and a sinuous reach near Saskatoon, CA (Figure 6c). Near Outlook, 
CA, the river is laterally restricted to a 500 m wide channel belt with a water depth <2 m (Strick et al., 2019). From 
1985 to 2021, most of the channel-belt experienced fluvial activity—only a few bars remained dry (Figure 6b). 
We measured 𝐴𝐴 𝐴𝐴𝑤𝑤 = 7.3 ± 0.09 km

2 , which for a downstream reach length of approximately 17.3 km, corresponds 
to a measured wetted area width of 422 m. The floodplain reworking and the channel overlap decay are charac-
terized by exponential growth and decay, respectively (Figures 6d and 6e), across the 25th (R 2 = 0.95 for 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and 
R 2 = 0.80 for 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 ), 50th (R 2 = 0.96 and R 2 = 0.62), and 75th percentiles (R 2 = 0.93 and R 2 = 0.51). Compared 
to the Trinity River, however, the trajectory of these curves is more variable between different baselines, which 
produces a wider interquartile range in 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 for a given ∆t. We estimate CR ∈ [0.22, 0.44] yr −1 with a 
median 0.20 yr −1 and PR ∈ [1.8, 5.8] km 2 with a median of 3.1 km 2. This corresponds to 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
∈ [0.31, 0.65] with a 

median of 0.42, floodplain reworking timescale of TR ∈ [6.9, 15.3] yr with a median 13.5 yr, and a linear flood-
plain reworking constant of R ∈ [0.07, 0.28] yr −1 with a median 0.08 yr −1. We estimate CM ∈ [0.20, 3.5] yr −1 

Figure 5. Detailed application of mobility framework to meandering rivers. (a) 2021 Landsat image (SWIR, NIR, Green) of 
the Trinity River near Liberty, TX. (b) Stacked channel masks using the conservative partial surface water Dynamic Surface 
Water Extent threshold, showing the gradual migration over the length of the reach. A cutoff occurred in the northernmost 
bend. (c) Exponential growth in 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and (d) exponential decay in 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 for the Trinity River reach. Gray circles and shaded 
area denote the median and IQR of the variable for a given ∆t, respectively. The solid and dashed red lines denote the best-
fit exponential function (Equation 2 or Equation 5) for the median trajectory and the 25th and 75th percentile trajectories, 
respectively. Relation between centerline migration rate, Mr, normalized by channel width, B, and (e) R and (f) 𝐴𝐴 𝑀𝑀

𝑟𝑟∕𝐵𝐵 and M for 
15 meandering rivers (red dot indicates Trinity River). Dependence of the number of cutoffs observed in the Landsat archive 
on (g) R and (h) M.
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with a median 0.23 yr −1 and PM ∈ [2.3, 7.2] km 2 with a median of 5.5 km 2. This results in a long-term overlap 
decay area of 𝐴𝐴 𝐴𝐴

∗

𝑀𝑀
∈ [0.19, 0.51] with a median of 0.25, an overlap decay timescale, TM ∈ [0.86, 14.6] yr with a 

median 13.0 yr, and a linear channel overlap decay constant of M ∈ [0.06, 0.65] yr −1 with a median 0.10 yr −1. 
Strick et al. (2019) measure a median unit bar migration rate of 𝐴𝐴 175.2 m∕yr , which is equivalent to a normalized 
bar migration timescale, 𝐴𝐴

𝑀𝑀𝑀𝑀

𝐵𝐵
≈ 0.415 yr

−1 , assuming that the downstream length of channel bars is proportional 
to their width (Holzweber et al., 2014). This estimate overlaps with the upper percentiles of the measured linear 
mobility constants.

We also calculate the mobility metrics in a less confined reach of the South Saskatchewan River near Saskatoon, 
CA (Figure 6c). We measure 𝐴𝐴 𝐴𝐴𝑤𝑤 = 6.2 ± 0.02 𝑘𝑘𝑘𝑘2 for the 23.8 km reach. For the floodplain reworking metrics, 
we find CR ∈ [0.04, 0.24] yr −1 with a median 0.15 yr −1 and PR ∈ [5.3, 7.4] km 2 with a median of 6.8 km 2, and 
corresponds to R ∈ [0.08, 0.21] yr −1 with a median 0.13 yr −1. For the overlap decay metrics, we estimate CM ∈ 
[0.07, 0.19] yr −1 with a median 0.08 yr −1, PM ∈ [1.8, 4.2] km 2 with a median of 2.6 km 2, and M ∈ [0.04, 0.12]
yr −1 with a median 0.05 yr −1. The less confined downstream reach has a slower M, but faster R, which is a result 
of the larger estimated active floodplain area.

Figure 6. Detailed application to a braided river. (a) 2021 Landsat image (SWIR, NIR, Green) of the South Saskatchewan River from the Gardiner Dam to Saskatoon, 
SK, CA. The examined upstream (green) and downstream (red) reaches are boxed. (b) Stacked channel masks using the conservative partial surface water Dynamic 
Surface Water Extent threshold of the upstream section near Outlook, CA. This image shows that the river activity is confined within a narrow channel-belt. (c) Stacked 
channel masks of the downstream section near Saskatoon, CA. Channel activity is more sinuous and significantly less confined. We show the (d) growth in 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and (e) 
decay in 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 for the downstream reach near Saskatoon, CA. Gray circles and shaded region indicate the median and IQR trajectory of the variable with respect to ∆t, 
respectively. We show the (f) growth in 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and (e) decay in 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 for the upstream reach near Outlook, CA.
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4.2.3. Results From Application of the Mobility Framework to River Avulsion

The area-based mobility metrics also successfully quantify river mobility at the fan-scale, integrating both 
channel-thread and channel-avulsion processes. The time series of channel masks for the Beki River reveal that a 
major river avulsion occurred in 2001, with the western channel belt receiving most of the flow from 1985 to 2000 
and the eastern channel belt capturing most of the flow from 2001 to 2021 (Figures 7a and 7b). Across this period, 
we measure 𝐴𝐴 𝐴𝐴𝑤𝑤 = 7.84 ± 3.7 km

2 . Floodplain reworking term is well-characterized by the exponential growth 
(Equation 2) across the 25th (R 2 = 0.99), 50th (R 2 = 0.99), and 75th (R 2 = 0.99) percentiles. Similarly, channel 
overlap decay term is characterized by exponential decay (Equation 5) at 25th (R 2 = 0.71), 50th (R 2 = 0.73), and 
75th (R 2 = 0.68) percentiles. The estimated parameters from Equation 2 are CR ∈ [0.006, 0.035] yr −1 (median of 
0.014 yr −1) and PR ∈ [105.6, 366.5] km 2 (median of 197.6 km 2). This corresponds to 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
∈ [8.0, 52.6] (median of 

18.8), TR ∈ [77.0, 394.9.0] yr (median of 164.2 yr), and a linear floodplain reworking rate of R ∈ [0.313, 0.399] yr −1 
(median 0.344 yr −1). Similarly, the estimated parameters from the characterization of the channel-overlap decay 
term are CM ∈ [0.162, 0.253] yr −1 (median of 0.242 yr −1) and PM ∈ [−1.56, 2.48] km 2 (median of −0.552 km 2). The 
negative value in estimated PM captures the fact that more pixels have switched state from wet-to-dry or vice versa 
before and after an avulsion than the total number of wet pixels in a baseline image (i.e., Di > Aw in Equation 4). 
The corresponding mobility metrics are 𝐴𝐴 𝐴𝐴

∗

𝑀𝑀
∈ [0.74, 1.32] (median of 0.95) and TM ∈ [5.5, 22.4] yr (median of 

12.2 yr). The resulting linear channel overlap decay constant is M ∈ [0.178, 0.404] yr −1 with a median 0.235 yr −1. 
Together, these results indicate that area-based mobility metrics can quantify fan-scale avulsion processes.

4.2.4. Comparison of Mobility Metrics Across River Planform and Mobility Processes

We directly compare mobility metrics across the rivers presented in previous subsections (Figure 8). The active 
floodplain size normalized by wetted area, 𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
 , and the reworking timescale, TR, are positively correlated across 

Figure 7. Detailed application of mobility framework to a river avulsion. (a) Stacked channel mask positions of the Beki River, India, showing the avulsion in 2001. 
Blue and red masks (using conservative partial surface water Dynamic Surface Water Extent threshold) are the channel locations pre-2001 and post-2001, respectively. 
(b) Three binary channel masks showing the differences in channel position between 1994 and 2006. (c) Exponential growth in 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅 and (d) exponential decay in 𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀 
for the Beki River fan. Gray circles and shaded area denote the median and IQR of the variable with respect to ∆t, respectively. The solid and dotted red lines denote the 
best fit exponential functions (Equation 2 or Equation 5) to the median, and 25th and 75th percentile trajectories, respectively.
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all processes and planforms (Figure 8a; ρ = 0.77, P-value = 0.00006). The Beki River avulsion has the larg-
est normalized floodplain size (𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
   =  24.6) and the slowest floodplain reworking timescale (214  yr), while 

the confined upstream reach of the South Saskatchewan River has both a small normalized floodplain size (
𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
  = 0.42) and the fastest floodplain reworking timescale (15 yr). The PR value for the Beki River corresponds 

to the scale of a fluvial fan, while the PR value for the South Saskatchewan River corresponds to the scale of the 
channel belt. Consequently, the small, normalized floodplain area and fast reworking timescale for the South 
Saskatchewan River compared to the large, normalized floodplain area and slow reworking timescale for the 
Beki River suggests that the primary means for braided rivers to access significant floodplain areas is through 
avulsions, rather than the gradual lateral migration present in the meandering river data. Results indicate that the 
linear floodplain reworking constant, R, for the Beki River is different than the meandering and braided channels 
(Figure 8c). A large R value for Beki River avulsion (0.34 yr −1) suggests that the system reworks its channel-belt 
quickly (214 yr) relative to its large channel-belt size. This observation is physically intuitive because a river 
avulsion accesses a floodplain area at the spatial scale of a fluvial fan in a short period of time.

The long-term decay area normalized by the wetted area, 𝐴𝐴 𝐴𝐴
∗

𝑀𝑀
 , and the overlap decay timescale, TM, are not posi-

tively correlated (Figure 8b; ρ = 0.233, P-value = 0.322). The upstream braided reach of the South Saskatchewan 
River has a small 𝐴𝐴 𝐴𝐴

∗

𝑀𝑀
 value of 0.25 and fast TM (16 yr), which suggests that the South Saskatchewan River has 

Figure 8. Comparing mobility across river examples. (a) Comparison of the floodplain area and reworking timescale across 
all rivers. Brown, blue, and green circles are the upstream (light) and downstream (dark) portions of the braided South 
Saskatchewan River, the meandering Trinity River, and the avulsing Beki River, respectively. Small black circles are the 14 
additional meandering rivers. (b) Comparison of the long-term decay area and the overlap decay timescale across rivers. 
Direct comparison of the (c) linear floodplain reworking rate constants, linear channel overlap decay rate, and (e) the relative 
mobility ratio, M/R, across different rivers. Whiskers show the interquartile range of the estimated mobility parameters.
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fast thread-scale dynamics, but threads consistently return to the same area. The linear overlap decay constants, 
M, are comparable between the upstream portion of the South Saskatchewan River (0.1 yr −1) and Beki River 
avulsion (0.23 yr −1), The change in sinuosity in the South Saskatchewan River corresponds to differences in 
M, where M is lower for the sinuous downstream reach (0.05)—a comparable rate to the meandering rivers 
(Figure 8d). Finally, the relative mobility ratio, 𝐴𝐴 𝑅𝑅∕𝑀𝑀 , captures potential differences in processes between the two 
metrics. The upstream braided reach of the South Saskatchewan River has a lower relative mobility ratio (0.8) 
when compared to the downstream South Saskatchewan River reach (2.6), the Trinity River (1.7), and the Beki 
River avulsion (1.4) (Figure 8e). These values indicate that for the confined braided South Saskatchewan River, 
the rate at which river threads evolve significantly outpaces the rate at which the channel-belt grows—intuitive 
for a laterally confined river.

5. Sensitivity Analysis
Our results indicate that area-based mobility metrics provide a quantitative framework to compare river mobility 
across different rivers from satellite imagery (Figures 4–8). In this section, we quantify the sensitivity of these 
metrics to the types of natural variability in application and data quality. Quantifying the effect of natural variabil-
ity is important when comparing measurements from one river to another, which includes differences in the size 
of the fluvial surface, the observation length, errors of omission and commission in the water masks, and natural 
stage variation within the channel mask time series. Unfavorable effects from inconsistencies in the surrounding 
factors of application could lead to inaccurate results and confound potential signals. We explore how each of 
these potential effects influences the resulting mobility metrics and provide heuristics to guide application.

5.1. Effect of Fluvial Surface Area

Measuring area-based mobility in different rivers of varying size will necessitate using different fluvial surface 
areas to calculate the floodplain reworking and channel overlap decay metrics. One critical advantage in apply-
ing an area-based framework to experimental rivers is that the fluvial surface area is carefully controlled, and 
the river migrates over the entire fluvial surface during the experiment. In natural rivers, the apparent fluvial 
surface—the area over which there are both active indicators and landform relics (e.g., oxbow lakes)—is often 
much larger than the area the river will access over the time-extent of remote imagery. To assess if the extent of 
the fluvial surface area affects the measured mobility metrics, we considered an arbitrary 17-by-17-km area of 
the Brahmaputra River, India, and calculated R and M for the reach while varying the size of the fluvial surface 
by changing the extent of the observation area (Figure 9a). Our sensitivity analysis revealed that the estimated R 
and M are invariant with the fluvial surface area size, which is in contrast to the original formulation of Wickert 
et al. (2013) (Figure S3 in Supporting Information S1). Thus, the extent of the fluvial surface area used to calcu-
late the area-based mobility is not a critical concern when applying our mobility framework.

5.2. Effect of Observation Duration

While the observation duration is roughly similar across Landsat applications (∼37 years), the time captured relative 
to the rate of river mobility will vary across rivers. We show the effect of variable observation duration relative to 
river mobility by examining how calculated mobility metrics change for a 42 km 2 fluvial surface of the Rio Bermejo, 
AR (−24.63, −61.26) with varying observation duration (Figure 9b). We computed mobility metrics over varying 
observation duration, where 10 years indicates the period 1987–1997, 20 years indicates the period 1987–2007, and 
so forth. Our sensitivity analysis revealed that R and M vary as a function of observation duration, but the estimated 
rate constants correlate with the measured centerline migration rates for the same reach. Short observation durations 
that only capture the early fast migration history of the Rio Bermejo are higher than metrics that include the entire 
37-year history, which capture both the period of fast centerline migration and slower centerline migration after 
2000. Our sensitivity analysis revealed that the estimated mobility is less reliable when rivers migrate less than one 
channel area during the observation duration (Figure S4 in Supporting Information S1). Thus, estimated mobility 
may be susceptible to bias for rivers with very slow mobility rates or for rivers with limited observation duration.

5.3. Effect of Classification Accuracy and River Stage Variation

The accuracy of river classification and river stage variation are distinct sources of uncertainty in the channel 
masks, which form the underlying data of our mobility framework. While annual composites eliminate some 
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of the variability in data quality from one image to another (Schwenk et  al.,  2017), the quality of compos-
ite images can vary from oneyear to another and lead to differences in classification accuracy. Further, annual 
composite-derived channel masks also capture variability arising from river stage. Interannual variability in river 
discharge, and subsequently stage, will be expressed as variability in wetted river area in annual channel masks. 
Consequently, both the errors of omission and commission in channel mask classification and interannual stage 
variability constitute noise; pixel water surface changes that are not a function of river mobility, but will be 
erroneously incorporated into mobility calculations (Langhorst & Pavelsky, 2023). The relative signal-to-noise 
ratio of the channel masks arising from differences in classification accuracy and river stage variation can signif-
icantly influence the river mobility metrics. To assess the consequences of channel mask noise in the calculation 
of area-based mobility metrics, we performed two experiments. First, we examined how errors of omission and 

Figure 9. Results from sensitivity analyses. (a) Effect of varying fluvial surface area on mobility metrics. (a1 and a2) Our metrics are insensitive to variations in the 
size of the observation area. (a3 and a4) We varied channel-mask area by adjusting the size of the input channel masks from the Brahmaputra River (27.4686, 94.8130). 
Sensitivity is reported as percent relative to a value of Rtrue and Mtrue measured from a mask height of 17 km. (b) Effect of observation duration on mobility metrics. 
(b1) Stacked channel mask locations of the Rio Bermejo, AR, from 1987 to 2021 (−61.2561, −24.6340). (b2) The change in measured R and M relative to an assumed 
Landsat-average value taken as the mobility measured using a 37-year observation duration (Rtrue and Mtrue). (b3) The reach-averaged centerline migration rate for the 
same reach. (c) Effect of pixel misclassification on mobility metrics. Top images show binary channel masks of the Rio Bermejo, AR, with low (c1) and high (c2) 
signal-to-noise ratios. (c3) The change in measured R and M while increasing the signal-to-noise relative to an assumed “true” value calculated with no added-noise (Rtrue 
and Mtrue). (d) Effect of river stage variation on calculated metrics. (d1) Differences in calculated R and M with varying CV(Aw) relative to values calculated with no 
simulated flooding. The vertical dotted line is the coefficient of variation of the “true” data with no simulated flooding. We show simulated data with (d2) no flooding 
(Rtrue and Mtrue), (d3) intermediate flooding, and (d4) high flooding. Binary dilations grow the water pixels by adjacency, and multiple passes increase the water area.
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commission and mis-classified pixels affect estimated rate constants. Second, we examined how interannual 
variations in river stage can impact resulting mobility calculations.

We designed an experiment on the same time series of natural channel masks from Rio Bermejo, AR (Section 5.2), 
to assess how errors of omission and commission impact mobility metrics. We simulated mis-classification errors 
by flipping binary raster pixels (1 → 0 and 0 → 1) at random spatial pattern across the raster channel mask, which 
created masks with incorrectly classified channel water within the fluvial surface. We define a signal-to-noise 
ratio as SNR = AW/AE, where AE is the area of mis-classified binary pixels. We then estimated R and M for different 
values of SNR (Figure 9c), where SNR = 100 indicates that 1 out of every 100 wetted pixels is mis-classified and 
SNR = 1 indicates an equal number of mis-classified pixels as wetted channel pixels. Results indicate that the esti-
mated rate constants deviate nonlinearly from their true values for SNR < 10 (Figure 9c). At higher SNR, the two 
area-based mobility rates approach the true value. For applications to natural data, this suggests that if >10% of the 
channel area is mis-classified, the resulting R and M will misrepresent the true mobility rates. A ∼90% accuracy 
is a reasonable goal in the DSWE classification and river channel extraction (Jones, 2019), indicating that errors 
in omission and commission are unlikely to significantly affect the computation of area-based mobility metrics, 
which is in contrast to linear rates of river mobility computed at the bank scale (Langhorst & Pavelsky, 2023).

Interannual variability in stage height can also lead to differences in measured mobility. Varying flood stage within 
the annual channel masks leads to increased variability in Aw that is not a function of river mobility, just flood-driven 
variations in river wetted width. While interannual flooding is an important hydrological phenomenon, for this 
analysis, we do not attribute flood-driven changes in wetted area as river mobility. To demonstrate the effect of 
flood-driven variability in Aw, we provide a test showing the effect of simulated flooding on a natural channel mask 
time series of the same 42 km 2 fluvial surface of the Rio Bermejo, AR (−24.63, −61.26). For each mask within 
the time series, we perform an n-fold binary dilation, which expands each “1” pixel such that each adjacent pixel 
is also a “1,” and will repeat the expansion n times. We vary the maximum n-fold dilation and repeat the measure-
ment of the area-based mobility metrics. We then track the coefficient of variation of Aw to represent the degree of 
interannual variability in the channel masks (Figure 8d). When CV(Aw) is similar to what is observed in the natural 
data set then the maximum n-fold dilation is small, and when CV(Aw) is greater than the natural data set then the 
maximum n-fold dilation is large. Our sensitivity analysis reveals significant variability in estimated R and M with 
varying CV(Aw). In the case of R, significant interannual variability can lead to misleading overestimates of the true 
value. In the case of M, interannual variability leads to underestimates of the true value. While we found the effect 
of interannual flooding to be less significant than classification errors in natural applications, flood-driven variation 
in Aw should be a careful consideration. Minimizing interannual variation in Aw could be achieved either by focusing 
on similar periods of the hydrograph from year-to-year, or by omitting years with significantly different Aw.

6. Discussion
Our results show that the area-based river mobility metrics capture known trends in the rates and occurrence 
of river processes in meandering and braided rivers at scales ranging from a reach to a fluvial fan. We repro-
duce expected trends using numerical models, which demonstrate the successful application of the framework in 
capturing trends in river mobility under ideal, noise-free conditions (Figure 4). The application of our framework 
to natural river data showed that our metrics produce physically intuitive results and capture expected trends in 
river mobility (Figure 5). Original experimental applications of area-based metrics were limited to experimental 
braided rivers (Bufe et al., 2019; Wickert et al., 2013), and here, we adapted and upscaled the framework to 
quantify natural river mobility from satellite data (Figures 5–7). Our area-based framework to quantify river 
mobility can be used to directly compare mobilities across river planforms and processes (Figure 8). A systematic 
survey exploring how floodplain turnover and channel overlap differ between river planforms may be important. 
For example, differences in area-based mobility between braided and meandering rivers could highlight impor-
tant differences in floodplain turnover. Area-based metrics can also be used alongside centerline-, vector- and 
pixel-based methods that only quantity bank migration (Chadwick et al., 2023; Rowland et al., 2016; Sylvester 
et  al.,  2019) to tease apart relative contributions of bank-scale, reach-scale and floodplain-scale processes to 
floodplain erosion and planform change.

The linear floodplain reworking rate constant (R) and overlap decay rate constant (M) capture different aspects 
of river mobility (Figure 8). Our results reveal that R and M are similar for meandering rivers, which lose overlap 
of their thread morphology and access new floodplain material through the process of gradual channel migration 
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(Figure 8). However, significant differences in R and M values exist between meandering and braided rivers 
broadly (Figure 8), and even between the distinct sinuosity sections of the South Saskatchewan River (Figures 7 
and 8). This observation suggests that when mobility processes grow the floodplain area during thread-scale 
migration, like during lateral migration, R and M should be similar. When the thread-scale process does not 
actively grow the floodplain area, like thread-switching in braided rivers, the values of R and M will diverge 
(Figure 7). Thus, the ratio of R and M quantifies the magnitude of floodplain expansion relative to the magnitude 
of channel thread reorganization for a given reach (Figure 8).

The area-based mobility metrics developed here provide tools to quantify differences in river dynamics in 
response to environmental signals as well as measure the areas and rates needed to constrain organic carbon 
storage in fluvial environments. Our framework requires long-observation periods relative to the river mobility 
(Figure 9), and is ideally suited to compare rivers evolving under different boundary conditions. Broadly, we can 
compare rivers of all forms globally under boundary condition variations in water discharge, sediment flux, and 
bed slope—variables that are proposed to dictate the types and rates of river mobility processes (Bufe et al., 2019; 
Constantine et al., 2014; Donovan et al., 2021; Ielpi & Lapôtre, 2020; Larsen et al., 2006; Limaye, 2020; Micheli 
et al., 2004; Parker, 1976; Wickert et al., 2013). The age and oxidation of organic carbon in floodplains is in part 
controlled by the area over which the river is active, and how often the river reworks this floodplain material 
(Torres et al., 2017). Our mobility framework directly quantifies the relevant rates and scales of fluvial activity. 
The estimated floodplain area, PR, should correspond to the potential area for carbon storage. The reworking 
timescale, TR, quantifies the typical duration for which organic carbon is allowed to age and oxidize in the flood-
plain (Torres et al., 2017). Our results indicate that this can be significantly different based on the dominant 
river mobility process and river planform (Figures 7 and 8). Within this context, meandering rivers with large, 
normalized floodplain areas and large long-term decay areas may access a significant area of floodplain organic 
carbon through lateral migration alone, but downstream transit times of fluvial organic carbon may be relatively 
long due to paired mobilization and deposition of organic carbon (Douglas et al., 2022; Golombek et al., 2021; 
Repasch et al., 2021). Alternatively, braided rivers with small normalized floodplain areas and small long-term 
decay areas do not access significant areas of the floodplain without avulsion processes and may isolate flood-
plain carbon for significant periods of time, but should have fast downstream transit times as channel-belt threads 
rework themselves quickly (Lininger et al., 2018).

The two primary concerns when applying our framework to remote sensing data are river mask classification 
accuracy and the inter-annual variability in river wetted area (Figure  9). These issues can be circumvented 
by targeting image acquisition from consistent periods of the hydrograph from year to year (e.g., Rowland 
et al., 2016). Likewise, we can minimize the effects of classification accuracy by optimizing the chosen channel 
mask classifier to local conditions or leveraging multiple classification strategies to propagate the uncertainty in 
channel mask accuracy (e.g., using multiple DSWE bands). Through sensitivity analysis, we also showed that the 
area-based mobility metrics are not sensitive to the size of the study area (Figure 9), and that the Landsat timespan 
is sufficient to quantify the channel migration of many river systems. For very slow rivers, estimates of M will be 
affected (Figure S4 in Supporting Information S1).

With the goal of wide applicability, we provide heuristic rules for estimating area-based mobility metrics from 
satellite data:

1.  While there is no dependence of estimated mobility rates on observation area size, the downstream length 
within the defined observation area should capture the scale of river process of interest. This scale may range 
from a few channel bends in a meandering river to capture thread migration and channel-cutoff (Figure 5) to 
the scale of an entire fluvial fan to capture a major river avulsion (Figure 7).

2.  The river width must be sufficiently large to ensure high signal-to-noise with respect to channel mask classi-
fication. The value of 𝐴𝐴 𝐴𝐴𝑤𝑤 is proportional to channel width and the downstream length captured in the fluvial 
surface area. If rivers are too narrow, then the expected errors from the mask classification will be a significant 
fraction of 𝐴𝐴 𝐴𝐴𝑤𝑤 , such that the resulting area-based mobility is erroneously high (Figure 9). When data quality is 
ideal, we use a minimum threshold width of 90 m. Alternatively, commercial satellite data sets (e.g., Planet's 
RapidEye) offer meter-scale resolution, which could resolve mobility in smaller systems albeit over shorter 
timescales than Landsat data.

3.  We suggest using annual composites to minimize interannual variability of 𝐴𝐴 𝐴𝐴𝑤𝑤 resulting from flood stage 
differences. Years with significant overbank flooding should be excluded from the analyses as these images 
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may bias the estimated mobility rates (Figure 9). If enough months are present in the available swath-level 
images, annual composites average out most of the flood stage inundation. If flooding is a persistent problem, 
then manual removal of flooded images may be necessary. Previous researchers also suggest using a reference 
discharge from periods of time that captures equivalent parts of the hydrograph (Limaye,  2017; Rowland 
et al., 2016; Schwenk et al., 2017). While this may further minimize interannual variability of 𝐴𝐴 𝐴𝐴𝑤𝑤 , we found 
it to be site-dependent, which relied on detailed knowledge of local hydrographs combined with a sensitivity 
to availability of imagery.

4.  Finally, we suggest that mobility metrics should be used to target rivers that are moving sufficiently quickly 
to provide accurate estimates of area-based mobility. Our results indicate that M is sensitive to the length 
of the observation period when rivers do not migrate close to a channel area within the observation period 
(Figure 9). We suggest limiting application to rivers that show mobility-related pixel change areas greater 
than 𝐴𝐴 𝐴𝐴𝑤𝑤 .

7. Conclusions
We introduced a framework to quantify time and area-integrated metrics of river mobility from remote imagery. 
The framework adapts and upscales previous applications of area-based metrics designed for experimental data, 
and represents a first-of-its-kind application to the Landsat archive. We show that area-based metrics of river 
mobility are sensitive to natural river processes, including meander migration rates, channel-bend cutoff frequen-
cies, and fan-scale river avulsion (Figures 4–7). Our framework quantifies the rates and scales of floodplain 
reworking and channel-thread reorganization in natural rivers across a diverse range of river planforms, and 
processes consistent with traditional measurements (Figures 5 and 8). Unlike traditional methods, our metrics are 
not designed for a specific river planform or mobility process, and thus can be applied generally to test global 
predictions about how rivers respond to allogenic forcings (e.g., water and sediment flux), and constrain the rates 
and scales of organic carbon cycling in alluvial floodplains.

Notation
i Index for each image, unitless
k Index for each baseline image, unitless

𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝑅𝑅𝑅𝑅𝑅  Cumulative Reworked Floodplain area, km 2. Overbar indicates ensemble average.
𝐴𝐴 𝐴𝐴𝑑𝑑  Dry pixel area in baseline channel mask, km 2.
𝐴𝐴 𝐴𝐴𝑖𝑖  Cumulative unvisited floodplain pixels in first i channel masks, km 2.

PR Estimated active floodplain area, km 2.
CR Floodplain reworking growth rate, yr −1.

𝐴𝐴 𝐴𝐴𝑅𝑅  Reworking timescale, yr.
𝐴𝐴 𝐴𝐴

∗

𝑅𝑅
  Normalized active floodplain area, unitless (number of channel-areas).

R Linear floodplain reworking constant, yr −1.
𝐴𝐴 𝐴𝐴𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝑀𝑀𝑀𝑀𝑀  Channel overlap area, km 2. Overbar indicates ensemble average.
𝐴𝐴 𝐴𝐴𝑤𝑤  Wetted channel area, km 2.
𝐴𝐴 𝐴𝐴𝑖𝑖  Average area changed from water to dry or from dry to water, km 2.

PM Long-term channel area memory, km 2.
CM Channel overlap decay rate, yr −1.
TM Overlap decay timescale, yr.

𝐴𝐴 𝐴𝐴
∗

𝑀𝑀
  Normalized long-term decay area, unitless (number of channel-areas).

M Linear overlap decay constant, yr −1.
MR Centerline migration rate, m yr −1.

𝐴𝐴 𝐴𝐴  Channel width, m.

Data Availability Statement
Our analysis was performed in Python 3 (Van Rossum & Drake, 1995). The codes underlying this study are 
publicly available in archived Zenodo repositories. To download and generate water masks from Google 
Earth Engine Data, visit https://doi.org/10.5281/zenodo.7747389. To apply our mobility framework, visit 
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https://doi.org/10.5281/zenodo.7775843. All Landsat imagery is freely available through Google Earth Engine 
(Gorelick et al., 2017). Code for the meandering centerline model is found at https://github.com/zsylvester/mean-
derpy (Sylvester et al.,  2019). Code for the avulsion model is found at https://doi.org/10.5194/esurf-10-555-2022 
(H. K Martin & Edmonds, 2022). To access all the underlying data used in this publication, visit https://doi.
org/10.25349/D90G71.
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